
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 1

Electrocardiographic Signal Compression using
Multiscale Recurrent Patterns

Eddie B. L. Filho, Eduardo A. B. da Silva, Murilo B. de Carvalho, Waldir S. S. Júnior, José Koiller

Abstract— In this work, we use the Multidimensional Multiscale
Parser (MMP) algorithm, a recently developed universal lossy
compression method, to compress data from ECG signals. The
MMP is based on approximate multiscale pattern matching, encod-
ing segments of an input signal using expanded and contracted
versions of patterns stored in a dictionary. The dictionary is
updated using concatenated and displaced versions of previously
encoded segments, therefore MMP builds its own dictionary while
the input data is being encoded. The MMP can be easily adapted
to compress signals of any number of dimensions, and has been
successfully applied to compress two-dimensional image data. The
quasi-periodic nature of ECG signals makes them suitable for
compression using recurrent patterns, like MMP does. However,
in order for MMP to be able to efficiently compress ECG signals,
several adaptations had to be performed, such as the use of a
continuity criterion among segments and the adoption of a prune-
join strategy for segmentation. The rate-distortion performance
achieved was very good. We show simulation results were MMP
performs as well as some of the best encoders in the literature,
although at the expense of a high computational complexity.

Index Terms— Recurrent Pattern Matching, Multiscale Decom-
position, Vector Quantization, Electrocardiogram.

I. INTRODUCTION

IN this paper, we report the results of the application
of a universal lossy data compression scheme referred

to as MMP (multidimensional Multiscale Parser) [1] to the
compression of ECG (Electrocardiogram) data. In the last
years, digital storage media is getting progressively cheaper
and steadily growing in capacity. However, ECG compression
is still important for applications where data transmission
through telephone lines or telecommunication networks is
required. Therefore, considerable effort has been made to
achieve high compression rates with the distortion being low
enough so that the diagnostic accuracy is not compromised.

The compression algorithms reported in the literature can be
classified in three groups: direct, parametric and transform-
based. In the direct class, the algorithms employ prediction

Manuscript received February 1, 2005; revised July 5, 2005. This work was
accomplished through the partnership between UFAM (Universidade Federal
do Amazonas) and UFRJ/COPPE (Universidade Federal do Rio de Janeiro),
with the financial support provided by SUFRAMA (Superintendencia da Zona
Franca de Manaus).

Eddie B. L. Filho is with the Genius Institute of Technology, Manaus, AM,
Brazil (e-mail: efilho@genius.org.br).

Eduardo A. B. da Silva is with the Department of Electronics Engineering
and the Department of Electrical Engineering, COPPE, Universidade Federal
do Rio de Janeiro, Rio de Janeiro, RJ, Brazil (e-mail: eduardo@lps.ufrj.br).

Murilo B. de Carvalho is with the Department of Telecommunications
Engineering, Universidade Federal Fluminense, Niterói, RJ, Brazil (e-mail:
murilo@telecom.uff.br).

Waldir S. S. Júnior is with the Fundação Centro de análise, Pesquisa e
Inovação Tecnológica, Manaus, AM, Brazil (e-mail: waldirjr@fucapi.br).

José Koiller is with the Courant Institute of Mathematical Sciences, New
York, USA (e-mail: koiller@cims.nyu.edu).

techniques to estimate a sample or group of samples from
previously encoded data. A residual signal is then generated
by subtracting the actual sample values from the predicted
ones and the difference is quantized and encoded [2]. In the
parametric class, the algorithms attempt to extract features
from the input signal which will be used later to drive a model-
based synthesizer in order to reconstruct the signal [3]. In
the transform-based class, the input signal is first transformed
to another domain by a (usually) linear transformation. The
transformed signal is then compressed using some combina-
tion of quantization and entropy coding. One advantage of
this approach is that it is usually easier to compress the signal
in the transformed domain, as long as the transformation is
conveniently chosen. Some of the best known encoders are in
this class [4], [5], [19], [20].

In this work, we propose a new technique to compress ECG
signals. In order to make the comparisons to other algorithms
easier, we use ECG signals taken from the MIT/BIH arrhyth-
mia database. This database contains parts of ECG exams of
48 subjects, with two derivations (signals); each derivation
approximately 30 minutes long. The signals were sampled at
360 Hz and quantized at 11 bits of resolution. One of these
signals (the first three seconds) is illustrated in Fig. 1. The
results are assessed using the PRD (percent-root-mean-square-
difference) distortion metric and the CDR (compressed-data-
rate) rate, defined as:

PRD = 100

√

√

√

√

∑N−1
n=0 (x(n) − x̂(n))

2

∑N−1
n=0 (x(n) − µ)

2
(1)

CDR =
B

T
(2)

where µ is the baseline value of the analog-to-digital conver-
sion used for the acquisition of the data x(n) (in the MIT/BIH
arrhythmia database µ = 1024), B is the total number of bits
spent in the compressed representation of x(n) and T is the
duration of the original input signal in seconds.

850

900

950

1000

1050

1100

1150

1200

1250

0 0.5 1 1.5 2 2.5 3

t (seconds)

Fig. 1. A typical ECG signal.

Many of the state-of-the-art compression schemes devel-
oped so far are transform-based and rely on the three-step

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 2

encoding paradigm: a first step of transformation is followed
by a quantization step and an entropy coding step. Unlike
these methods, our proposed scheme is based on MMP, a
universal lossy compression method that merges all the steps
of the three-step approach in one. The MMP algorithm is
based on multiscale pattern matching [1]. In ordinary pattern
matching, two vectors v and u of equal lengths are said to
match if they are closer, according to some metric, than a
predefined threshold. On the other hand, in multiscale pattern
matching the two vectors to be matched can have different
lengths, that is `(u) 6= `(v). In order to match them, we first
change the size of the vectors using a scale transformation
TN(x) : R

`(x) 7→ R
N . For example, if we want to match

vector u of size 2 to vector v of size 5 we first evaluate
the scaled version u

s = T5(u) and after that we proceed by
performing an ordinary match between u

s an v. In this case,
the scale transformation can be implemented using classical
interpolation methods [6]. Alternatively we could match a
scaled down version of v, that is v

s = T2(v), to the vector u,
in which case the transformation could be implemented using
downsampling techniques. It should be noted that sometimes
u can match v

s while u
s does not match v, depending on the

choice of the vectors and the particular scale transformations
chosen. In our application, however, this is not a problem
because the choice of which transformation should be used is
implicit in the structure of the MMP algorithm. The matching
with scales is graphically illustrated in Fig. 2.

���
�

���
� ���

�

���
�

��	
	

���
�

�
� ���

�

���
�

���
�

��
��
��
�

��
��
��
��
�

��
��
��
��
�

���
�

���
�

���
�

���
�

 !
!

""#
#$$%

%

&&
&&
&&
&

''
''
''

((
((
(

n

n n

n

u

v

u

v

s

Fig. 2. Approximate matching with scales.

The MMP algorithm can also be regarded as a kind of
variable block-size vector quantization (VBVQ). Indeed, it has
points in common with other works on variable block-size
VQ (see, for example [14]–[17]), as it quantizes regions of
the signal with blocks of different dimensions taken from a
dictionary. However, the MMP algorithm when seen as a vari-
able block-size VQ presents unique characteristics: an adaptive
dictionary (which obviates the need for previous training), a
binary segmentation tree (even for multidimensional data) and
the multiscale pattern matching. For example, unlike MMP,
neither [16] nor [17] use the concept of multiscale pattern
matching, and they use a quadtree segmentation strategy with
fixed codebooks at each different block dimension.

This paper is organized as follows. In section II, the
basic segmentation procedure used in the MMP algorithm
is presented. In section III, a version of MMP using a rate-
distortion optimized segmentation tree is discussed. In section
IV, an improved MMP, with a more general segmentation, is
described. In section V, a method to improve the performance
of MMP for smooth signals is presented. In section VI, some

modifications to the MMP algorithm are made in order to
further improve the performance for ECG signals. Next, in
section VII, we present experimental results and comparisons
to other state-of-the-art ECG encoders. Finally, in section IX
we present our conclusions. Appendix I contains details of
the particular implementation of MMP used in our simula-
tions. Appendix II contains an analysis of the computational
complexity of the algorithm.

II. THE MMP ALGORITHM

The MMP is a lossy compression scheme based on
multiscale pattern matching. It has a dictionary D =
{v0,v1, . . . ,vL−1} of L fixed-length vectors vi that it uses
to encode variable-sized segments of an input vector X

0 =
(

x(0) x(1) . . . x(N − 1)
)

, where the dimension N
is a power of two. When attempting to encode X

0, MMP
searches in the dictionary D for the best vector vi0 that can
be used to replace X

0. In the spirit of multiscale pattern
matching, the search procedure tests all vectors in D, no
matter the sizes of each vi. The choice of the best vector
is based on the minimization of some performance criterion.
In one of its simpler versions, MMP chooses the vector
that minimizes the squared error ξ0 = ‖X0 − vi0‖

2. If the
squared error ξ0 is smaller than or equal to a predefined
distortion threshold d∗, then the encoding of X

0 is done and
MMP outputs a single bit flag ′1′, indicating that a match
has been found, followed by the dictionary index i0. If the
matching attempt fails, which means that the squared error ξ0

is above the threshold d∗, then MMP splits the input vector in
two segments, X

1 =
(

x(0) x(1) . . . x(N/2 − 1)
)

and
X

2 =
(

x(N/2) x(N/2 + 1) . . . x(N − 1)
)

. MMP
then outputs a one bit flag ′0′ indicating splitting, and after that
it repeats the matching attempt for X

1. If it succeeds, it outputs
′1′ followed by the dictionary index i1. MMP then proceeds
to encode the second segment X

2. If the attempt to match
X

1 fails instead, it outputs the flag ′0′ and split X
1 in two

smaller segments, X
3 =

(

x(0) x(1) . . . x(N/4 − 1)
)

and X
4 =

(

x(N/4) x(N/4 + 1) . . . x(N/2 − 1)
)

,
before it attempts to encode X

2. In fact, the splitting is
recursively repeated until a match is successful, before the
recursive procedure returns. Fig. 3 illustrates this segmentation
procedure.

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

x(4) x(5) x(6) x(7)x(0) x(1) x(2) x(3)

x(0) x(1) x(2) x(3)

x(2) x(3)

4

2

3X X

X 0

XX 1

XX 9 10

Fig. 3. A segmentation of the input vector X
0.

As can be seen from Fig. 3, the segmentation procedure
defines a segmentation tree S, where each node nj corresponds
to a different segment X

j of the input vector. The segmen-
tation tree associated with the example above is illustrated in

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 3

n

n

0

1 2

43

9 10

n

n

n

n

n

Fig. 4. A segmentation tree S.

Fig. 4. In this example, the output generated by MMP would
be the sequence 0, 0, 1, i3, 0, 1, i9, 1, i10, 1, i2. Note that in an
actual implementation, these indexes would be coded using an
adaptive arithmetic encoder [18]. The flag sequence 0010111
defines the chosen segmentation tree in a top-down fashion.
As long as one knows which are the vectors associated to
each index ij (that is, both the encoder and the decoder have
the same dictionary D), the output sequence generated by
MMP is easily decoded as follows: the decoder begins by
reconstructing the segmentation tree from the segmentation
flags. After that, the decoder knows the lengths associated to
each index ij , since each node nj corresponds to a vector
of known size. Then the decoder proceeds by replacing each
node nj by a correctly scaled version of the vector vij

in the
dictionary D.

The MMP algorithm as described so far operates with a
fixed database, that is, the dictionary is static. A much better
performance can be achieved if we allow the dictionary to
adapt itself to the data being encoded. This is accomplished by
updating the dictionary with concatenations of previously en-
coded segments. This resembles the way the lossless Lempel-
Ziv compression scheme [7] works. For example, referring
to Fig. 3, as soon as the indexes i9 and i10 are determined,
we can build X̂

9 and X̂
10, the reconstruction versions of the

input segments X
9 and X

10, by properly scaling the dictionary
vectors vi9 and vi10 . Then we have the reconstructed version
of X

4 by the concatenation of X̂
9 and X̂

10, that is X̂
4 =

(

x̂(2) x̂(3)
)

. We can then safely include X̂
4 in the dictio-

nary, since the information used to generate this new vector is
available both to the encoder and to the decoder, ensuring the
proper synchronization of the dictionaries at both ends. The
next update of the dictionary in this example will be done by
including in it the concatenations of X̂

3 and X̂
4, as soon as

the two segments are available. When MMP tries to represent
an input segment X

j by one of the vectors in its dictionary
D, it first has to apply scale transformations to adjust the
length of each vector in D to equal the length of X

j . If the
length of the input vector is N , the segmentation procedure
can create vectors of lengths N/2, N/4, . . . , 1. This implies
that there are at most 1 + log2(N) different lengths or scales.
Therefore, to save time, we could keep 1 + log2(N) copies
of the dictionary, one at each scale, to avoid the computation
of the scale transformation each time a match is attempted.
This way, we only need to use the scale transformation when
we are including a new vector in the dictionary. We denote a
copy of the dictionary at scale 2−pN as Dp. If we are using

this multiple codebook scheme, to include a new vector X̂
j

in the dictionary we must actually include T2−pN [X̂j] in Dp

for p = 0, 1, . . . , log2(N).

III. R-D OPTIMIZATION OF THE SEGMENTATION TREE

The segmentation tree generated by the distortion-controlled
version of MMP is created using local decisions based on
distortions calculations, and is thus not globally optimum in
a rate-distortion sense. We can improve the R-D performance
of MMP by optimizing its segmentation tree [1].

Referring to Fig. 3 and 4, each node nj is associated to a
segment of the input vector X

j that is best represented by a
scaled version of a dictionary element vij

, referred to as v
s
ij

.
Therefore, we can associate to each node the distortion:

D(nj) = d
(

X
j ,vs

ij

)

(3)

where d(u,v) is some distortion metric. For example, the
distortion can be the squared error d(u,v) = ‖u− v‖2.

We call R(nj) the rate needed to specify the index ij , that
is:

R(nj) = − log2(Pr(ij)) (4)

where Pr(ij) is the probability of occurrence of index ij in
the dictionary.

The overall distortion is then:

D(S) =
∑

nj∈SL

D(nj) (5)

where SL is the set of leaf nodes of S. The amount of bits
needed to encode this approximation is the rate R(S), which
is given by:

R(S) = Rt(S) +
∑

nj∈SL

R(nj) (6)

where Rt(S) is the rate required to specify the segmentation
tree.

The best segmentation S∗, in an R-D sense, leads to
the minimum rate R(S) given that the distortion D(S) is
no greater than a target distortion D∗ or, alternatively, the
minimum distortion D(S) at rate R∗. This is a constrained
minimization problem stated as:

S∗ = arg min
S∈SR∗

D(S),

SR∗ = {S : R(S) = R∗} (7)

To find S∗ we can find the solution to a related uncon-
strained problem introducing a Lagrange multiplier λ. It is
well known that if we find the minimum of the Lagrangian
cost J(S) = D(S) + λR(S) [8], we also find the solution to
the constrained problem when we choose R(λ) = R∗. Hence,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 4

we have that

S∗=argmin
S

(J(S))

=argmin
S

∑

nj∈SL

D(nj) + λ

Rt(S) +
∑

nj∈SL

R(nj)

=argmin
S

λRt(S) +
∑

nj∈SL

(D(nj) + λR(nj))

=argmin
S

λRt(S) +
∑

nj∈SL

J(nj)

 (8)

where J(nj) = D(nj) + λR(nj).
A sub-tree S(nj) of S at node nj is the binary tree

composed by all the nodes of S that have nj as the root node.
Fig. 5 illustrates the sub-tree S(n4) of the binary tree in Fig.
4. We denote S −S(nj) the tree obtained from S by pruning
the sub-tree S(nj).

n

n4

9 10n

Fig. 5. The sub-tree S(n4) of the binary tree in Fig. 4.

If the Lagrangian costs J(nl) associated with the ap-
proximation of each segment X

l are independent, then the
Lagrangian cost of two sub-trees J(S(nl)) and J(S(nm))
are also independent, as long as all nodes of both sub-trees
are different. Then a fast search algorithm, similar to the
one in [9], can be implemented considering that if J(nl) ≤
J(S(n2l+1)) + J(S(n2l+2)), then the sub-trees S(n2l+1) and
S(n2l+2) must be pruned from S in order to decrease the
cost. Unfortunately, this is not the case with MMP, since the
costs J(nl) are coupled by the dictionary updating procedure.
That is, the computation of the overall variation of the cost
obtained by pruning subtree S(nl) has to take into account
the variation in the cost of the other nodes J(nk) due to the
variation of the dictionary (that was caused by the pruning
of subtree S(nl)). However, if the initial dictionaries are
large enough, one can argue that the effect of the dictionary
update on the minimization of J(nl) can be negligible. In
practical MMP implementations, we usually impose an upper
limit to the size M of the input vector X

0 due to the finite
amount of memory available. This forces the input data to be
broken in blocks of size M that are sequentially processed by
MMP algorithm (Note that the initial dictionary of one block
is the final dictionary of the previous block). Although the
assumption of a large initial dictionary is not true for the first
blocks, the dictionary eventually grows large enough so that
the Lagrangian costs J(nl) are almost decoupled. In this sense,
one could use the algorithm in [9] to find an approximate R-D
optimal solution.

However, if we want to use relatively large blocklengths
or if the dictionary is too small (as happens at very low

rates), we should modify the algorithm to take into account
the impact of the dictionary-updating procedure. We know that
the dictionary is updated by the inclusion of the concatenation
of previously encoded segments. Therefore, if we choose to
prune a sub-tree, the impact in the cost is not restricted to
that sub-tree, but can affect all nodes that are to the right
of the node which is being analyzed. That is, if we prune
a sub-tree, we might remove from the dictionary an element
that would otherwise be used later to approximate an input
segment, therefore increasing the cost. In [10], an algorithm
is proposed that, although sub-optimal, takes into account the
impact of the pruning of a node in all other dependent nodes,
yielding better performance than the direct application of the
algorithm in [9].

In this paper we use a slightly different approach that has
a smaller computational cost. The optimization begins by
initializing the segmentation tree as the full binary tree of
depth log2(N), where N is the length of the input vector X

0.
The dictionary is temporarily updated following the updating
rule described in section II. Then, we perform an analysis
at each pair of nodes n2k+1 and n2k+2 sharing the same
parent node nk to decide whether to prune or not, in order
to lower the Lagrangian cost. The decision must be made
considering the Lagrangian cost of the subtree S(n2k+1), the
cost of the subtree S(n2k+2) and the cost of the single node
nk. Whenever we decide to prune, the dictionary must be
reset to its previous state, since it contains an invalid entry
(resulting from the concatenation of X̂

2k+1 and X̂
2k+2). The

same procedure is repeated for each pair of nodes until no
more nodes are pruned. In order to evaluate the Lagrangian
costs, we need to know the probabilities of occurrence of
each vector in the dictionary, as well as the probability of
each segmentation flag. In our implementation of MMP, these
probabilities are estimated by keeping a record of the number
of times each vector has been used, as well as the number
of occurrences of each flag. Therefore, whenever we do a
temporary update of the dictionary, we must also perform a
temporary update of the statistics record.

IV. FURTHER OPTIMIZATION OF THE SEGMENTATION
TREE: THE PRUNE-JOIN ALGORITHM

In section III we showed how to perform a rate distortion
optimization of the segmentation tree. At first glance, this
might suggest that there is no more room for enhancement,
regarding the segmentation, but that is not the case at all.
Fig. 6(a) contains all options of segmentation for an input
vector of size 8 associated to a binary tree. In Fig. 6(b-c),
we show some of the other possibilities of segmentation. This
illustrates that the binary tree structure constrains the options
for segmentation.

In [11], an algorithm to extend the segmentation options of
a binary tree, called the prune-join algorithm, is presented. In
that framework, an input vector is firstly segmented, according
to an R-D optimized segmentation tree and each segment is
approximated by a polynomial function. The optimization is
performed by iteratively pruning a full binary tree, in the
spirit of [9]. This first step is the prune step. Then a second

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 5

(a) (b) (c)

Fig. 6. Segmentation restriction on MMP: (a) Allowed, (b-c) Not allowed.

step, the join step, is performed where all neighbor nodes
who are not descendants from the same parent node are
tested to verify if they can be joined together to improve the
overall performance, that is, lowering the Lagrangian cost. The
join step can be repeated recursively allowing junctions of
junctions of nodes to be made. After that, the coefficients of
the polynomials of the remaining nodes are scalar quantized
and encoded. In [11], it was shown that the prune join
algorithm outperforms the single prune-only algorithm and,
unlike the prune-only algorithm, it provides a nearly optimum
R-D performance, at least in the case presented in [11], where
the signals to be encoded are assumed to be piecewise poly-
nomial. Those theoretical results cannot be directly applied
to the MMP case, because the use of the dictionary and the
multiscale pattern matching approach are radically different
from the scalar coding of the polynomial coefficients used in
the original prune-join algorithm. However, we can expect an
improvement in performance as we extend the possibilities of
segmentation. The options of segmentation illustrated in Fig.
6(b-c) can all be obtained from a binary tree segmentation
followed by a single join step.

The prune-join idea can be incorporated to MMP. In order
to do that, we firstly apply the original MMP segmentation
procedure to an input vector X

0, obtaining a rate-distortion-
optimized segmentation tree S. The rate-distortion optimiza-
tion procedure described in section III performs the prune part
of the algorithm. After that, we carry on an analysis to verify
if any two neighbor nodes not sharing the same parent node
can be joined together to lower the Lagrangian cost. Fig. 7(a)
illustrates an example of a segmentation tree after the pruning
step. Fig. 7(b) illustrates a possible join operation.

We denote U (nj , nl) the union of the two neighbor nodes
nj and nl. At each pair of neighbor leaf nodes (nl, nl) that
descend from distinct parent nodes, we test to see whether
the cost of encoding both independently, (that is J(nj) +
J(nl) + λRnu(i, j)) is greater than the cost to encode the
union (Rnu(i, j) is the rate associated to the encoding of
the flags indicating that the nodes should not be joined). The

n 2

3 4

10

n
0

1

n n

n

5
n

6
n

7
n

8
n

9
n n

n 2

3 4

10

n
0

1

n n

n

5
n

6
n

7
n

8
n

9
n n

X X X X X 610873 X 9

X 3 X7 X 8 9X 6X10X

(a)

(b)

Fig. 7. The join step.

Lagrangian cost of the union is given by:

J (U (nj , nl)) =d
(

(

X
j

X
l

)

,vs
ijl

)

+

λ (Ru(j, l) − log2(Pr(ijl))) (9)

where Ru(j, l) is the rate spent to encode the join flag, v
s
ijl

is the best vector in the dictionary scaled to the sum of the
lengths of X

j and X
l and ijl denotes the index of the vector

chosen.
Similarly to the case of the R-D optimization of the seg-

mentation tree, some care should be taken when evaluating
(9). Whenever we choose to join two nodes nj and nl, the
dictionary will no longer be updated with the result of the
concatenation of the reconstruction vectors associated to each
of them. This can affect the evaluation of the costs for all
subsequent nodes. To solve this problem, whenever a union
occurs the dictionary update due to each block is removed
and the statistics record is corrected, adjusting the results
for the other blocks. This procedure is similar to that used
during the prune step. Besides, the cost of the union must
be computed together with the first block being analyzed, to
prevent the use of an element that would be pruned later. It is
also interesting to point out that if we are using multiple copies
of the codebook to speed up the computation of the multiscale
pattern matching, we no longer have only 1+log2(N) different
scales, since the join procedure will add some extra scales to
the ones available due to the binary tree subdivision scheme.

V. MMP USING SMOOTHNESS CRITERIA BY SIDE-MATCH
VQ

The representation X̂
0 that MMP produces can have severe

discontinuities at the boundaries of the segments X̂
j generated

by the segmentation procedure, even if the original input vector
X

0 is smooth. This is illustrated in Fig. 8.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 6

X

X X

0X

X 21

3 4

X

X X

0X

X 21

3 4

^

^

^ ^

^

(b)

(a)

Fig. 8. Segmentation-induced discontinuity: (a) original signal; (b) recon-
structed signal.

This happens because the distortion definition in (3), used
to evaluate the cost of a node nj , is independent of the
representations chosen for other neighbor segments. Therefore,
MMP has no explicit control over the smoothness at the
boundaries of the segments. For example, referring to Fig.
8, X

3 and X
4 are independently approximated by X̂

3 and
X̂

4, respectively. Although the original segments have no
discontinuities, the concatenation of X̂

3 and X̂
4 generates

X̂
1, the representation for X

1 created by MMP, that has a
discontinuity at the point where X̂

3 and X̂
4 are concatenated

(see Fig. 8). In [12], it was proposed an efficient method to
control the smoothness of the representations generated by
a vector quantization (VQ) scheme called side-match vector
quantization (SM-VQ). SM-VQ can be incorporated to MMP
in order to improve its performance for smooth input vectors
[13]. The idea is to choose a subset of the dictionary D, called
the state dictionary DS , composed of the NS best vectors
vk ∈ D according to some smoothness criterion. In order to
better understand the side-match MMP, one should first make
the definitions that follow.

The position of the first sample of X
j inside X

0 is given
by:

FP (j) = N
(

(j + 1) 2−blog2(j+1)c − 1
)

(10)

where N is the length of X
0. For example, referring to Fig.

3 we have: FP (0) = 0 (meaning that the first sample of X
0

is x(0)), FP (1) = 0 (meaning that the first sample of X
1

is x(0)), FP (2) = 4 (meaning that the first sample of X
2 is

x(4)) and so on.
The length N j of X

j , can be evaluated as:

N j = N2−blog2(j+1)c (11)

We define the left-neighbor of X
j as the vector:

L
j =

(

Lj(0) Lj(1) . . . Lj(N j − 1)
)

=
(

x̂(Fx) . . . x̂(Fy)
)

, FP (j) ≥ 1 (12)

where Fx = FP (j)−N j and Fy = FP (j)−1. According to
(12), the left-neighbor L

j is a vector of the same length of X
j

0

s
v (2)v (0)

0

s

0

s
v (1)

0

s
v (3)x̂(0) x̂(1) x̂(3)x̂(2)

s
v

0
D (, 2)

2

s
v

0
D (, 2)

1

s
v

0
D (, 2)

0

2L v
s

0

Fig. 9. Evaluation of the rugosity.

whose components, denoted by Lj(n), are the reconstructed
samples at the left side of X

j .
In order to measure the smoothness of the approximation,

we define three parameters:
i) The zero-order discontinuity:

D0 (vs
k, j) =

∣

∣Lj(N j − 1) − vs
k(0)

∣

∣ (13)

ii) The first-order discontinuity:

D1 (vs
k, j) =

∣

∣Lj(N j − 2)−

Lj(N j − 1) − vs
k(0) + vs

k(1)
∣

∣ (14)

iii) The second-order discontinuity:

D2 (vs
k , j) =

∣

∣Lj(N j − 3) − 2Lj(N j − 2)+

Lj(N j − 1) − vs
k(0) + 2vs

k(1) − vs
k(2)

∣

∣ (15)

These definitions are based on finite-differences approxima-
tions to zero-order, first-order and second-order derivatives,
respectively.

We then define a rugosity metric as:

R(vs
k , j) = αD0 (vs

k, j) + βD1 (vs
k, j) + γD2 (vs

k, j) (16)

where v
s
k is a properly scaled vector of the dictionary. For

example, referring to Fig. 3, when MMP attempts to encode
X

2, it has available the representations X̂
3, X̂

9 and X̂
10.

Therefore, it knows X̂
0 up to the fourth sample (FP (2) = 4),

that is X̂
0 =

(

x̂(0) x̂(1) x̂(2) x̂(3) ? ? ? ?
)

.
The left-neighbor of X

2 is determined as L
2 =

(

x̂(0) x̂(1) x̂(2) x̂(3)
)

. In this example, MMP scales
all vectors of D to length 4, and, in the spirit of SM-VQ,
builds a state dictionary DS containing the NS least rugose
vectors, according to (16). Fig. 9 illustrates which data are
used to compute R (v0, 2).

In other words, we use the last samples of the left-neighbor
L

j of X
j to evaluate which are the best vectors in D to encode

X
j , according to our smoothness criterion. It should be noted

that for j = 2k − 1, with k an integer, the left-neighbor is
undefined (there are no samples at the left of X

j). In that case,
the state dictionary is the full dictionary, that is DS = D.

The state dictionary is updated according to these rules
and prior to each matching attempt. The size NS of the
state dictionary is also adapted. Based on the assumption that
simpler signals require less vectors in the dictionary in order
to be well represented, we use an activity metric, as defined
in (17), to estimate the number of vectors NS required in DS

to encode the input segment. The activity was chosen because
it accounts for the number of transitions through the vector,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 7

being a reasonably good measure of the complexity of the
signal.

A
(

L
j
)

=

Nj−1
∑

n=1

∣

∣LJ(n − 1) − Lj(n)
∣

∣ (17)

The actual size of the state dictionary is proportional to the
activity of the left-neighbor, evaluated by (17), as defined in
Appendix I.

One could argue that the use of the state dictionary in-
troduces a distortion-only optimization criterion in a frame-
work that is rate-distortion optimized, which could lead to
suboptimal performance. However, the strategy of filling the
state dictionary with the NS least rugose elements can be
interpreted as a simple statistical modeling of the source. It
is equivalent to say that the dictionary remains the same,
but the probabilities of occurrence of the |D| − NS most
rugose elements of D are zero (|D| is the number of elements
in D). Therefore, the solution still performs a rate-distortion
optimization, at least for the class of sources that conform to
our simple statistical model.

VI. THE DISPLACEMENT DICTIONARY

As can be seen from Fig. 1, a typical ECG signal is almost
periodic. The MMP algorithm adapts its dictionary to the
input signal and has the potential to learn the pattern in
one period. However, since the length of the segments are
not multiples of the basic period, MMP has to learn several
shifted versions of the period to efficiently represent the input.
To improve the performance for periodic or quasi-periodic
signals, we can use a displacement dictionary DD , where
we include displaced versions of the approximations for the
already encoded segments. The displacement dictionary helps
to speed up the learning rate of the algorithm in this case. It
can be implemented by keeping the M last samples of the
reconstructed signal in a vector V

j
D. That is:

V
j
D =

(

x̂(FP (j) − M) x̂(FP (j) − M + 1) . . .

x̂(FP (j) − 1)
)

(18)

The displacement dictionary is defined as:

u(p) =
(

V j
D(p) V j

D(p + 1) . . . V j
D(p + N j − 1)

)

DD = {u(p)} , p = 0, 1, . . . , M − N j (19)

In the spirit of side-match MMP, a displacement-state dic-
tionary DD

S composed of the ND
S least rugose elements in

DD (as defined in (16)) is also defined for the displacement
dictionary. When MMP attempts to encode the segment X

j it
searches in DD

S for the element that is best suited to encode
X

j in a rate-distortion sense. If we define:

Jj
D(p) = d

(

u(p),Xj
)

+ λR(p),u(p) ∈ DD
S

pj = min
p

Jj
D(p)

v
j
D = u(pj) (20)

where R(p) is the rate needed to encode the position p. In other
words, MMP searches for the element in DD

S that minimizes
the Lagrangian cost J j

D(p), as defined in (20).

During the optimization procedure of sections III, IV and
V, the minimum Lagrangian cost of the displacement-state
dictionary J j

D(pj) (plus λ times the rate needed to encode a
flag indicating that the displacement-state dictionary is chosen)
is compared to the minimum Lagrangian cost found using the
state dictionary DS (plus λ times the rate needed to encode a
flag indicating that the displacement dictionary is not chosen),
and the overall minimum is selected. When the optimization
is complete, the flags that describe the segmentation tree, the
flags indicating the joins and the dictionary indexes (each in-
dex with an additional flag indicating if the index corresponds
to the state dictionary or to the displacement-state dictionary)
are encoded.

VII. EXPERIMENTAL RESULTS

We have implemented MMP in software and applied it to
compress ECG data from the MIT/BIH arrhythmia database.
In order to make comparisons to the works in [4], [5] and [19]
easier, we used both channels of the following 11 records: 100,
101, 102, 103, 107, 109, 111, 115, 117, 118 and 119, referred
to as dataset A. Records 201, 208, 212, 213, 228, 231 and
232 were also compressed for further evaluation, referred to
as dataset B.

Fig. 10 shows the simulation results (PRD versus bit rate)
for the 11 records of the dataset A (full-length).

Fig. 11 shows a comparison with the mean results reported
in [5] for SPIHT [4] and WT-DCCR-TV-VQ [5]. It is im-
portant to note that we have chosen to present the results for
SPIHT in [5] instead of the ones in [4]. This was so because
the results in [5] correspond to full-length (around 30 minutes)
records, unlike the ones in [4], that correspond to just the first
10 minutes of the records (this is a fair comparison since the
results for 30 minutes are in general slightly better than the
ones for 10 minutes). The data for Fig. 11 was obtained by
averaging the actual PRD values obtained for both channels
of the 11 records at each bit rate. From this figure, one can
see that MMP outperforms the SPIHT and WT-DCCR-TV-VQ
for all data rates. Table I contains the same data of Fig. 11
in tabular form. In order to make a fair comparison of the
proposed method’s performance with the one in [19], Table
II contains results for the first 10 minutes of the records
considered in Table I. This was necessary because the results
available in [19] correspond to 10 minutes and not to the full-
length ECG signals. Table III contains MMP results for the
first 10 minutes of the dataset B.

Although MMP outperforms SPIHT [4] and WT-DCCR-
TV-VQ [5], this is not true for the JPEG2000-based method
in [19]. A distinctive feature of this method is the period
normalization that is carried out in order to assemble an
image with each period being one line. This provides a very
effective exploitation of the redundancy among periods of the
quasi-periodic ECG waveform. One should note that a similar
period normalization technique can be easily incorporated into
MMP. In fact, with period normalization, the displacement
dictionary could be used very effectively, since there would
be a tendency to use with high probability the index of this
dictionary corresponding to a displacement equal to the period.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 8

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500 550

P
R

D
 (

%
)

Rate (bits/s)

Fig. 10. Performance of MMP with the MIT/BIH database, full-length dataset
A (PRD × CDR).

2

4

6

8

10

12

14

16

18

50 100 150 200 250 300 350

P
R

D
 (

%
)

rate (bits/s)

MMP
WT-DCCR-TV-VQ

SPIHT

Fig. 11. Mean performance of MMP compared to SPIHT and WT-DCCR-
TV-VQ for the dataset A (full-length).

Indeed, this is a promising area for further developments in
ECG encoding using the MMP algorithm.

Fig. 12, 13, 14 and 15 contain 1 second of the channel 0 of
the registers 100, 107, 117 and 119 respectively, at different
PRD values and rates.

VIII. ANALYSIS OF THE RECONSTRUCTED SIGNALS

As presented in the last section, the performance of the
proposed algorithm is good in a PRD sense. However, the
usefulness of the reconstructed signals for diagnosis is yet to
be assessed. In order to do so, it is desirable that we start with a
brief discussion about the morphology of an ECG signal [21].

The heart is essentially a muscular pump. It pumps blood
continuously through the circulatory system and consists of
four chambers: right and left atria (upper chambers) and right
and left ventricles (lower chambers). Each atrium connects to

TABLE I
PERFORMANCE COMPARISON OF MMP, SPIHT AND WT-DCCR-TV-VQ,

FULL-LENGTH DATASET A (PRD ± σ).

CDR(bits/s) MMP WT − DCCR [5] SPIHT [5]
94.7 6.4 ± 2.45 9.8 ± 3.60 16.9 ± 3.68
112.3 5.6 ± 2.22 8.0 ± 2.97 13.2 ± 2.95
140.5 4.7 ± 1.99 6.1 ± 2.33 9.4 ± 2.32
181.9 3.9 ± 1.79 4.7 ± 1.86 6.3 ± 1.59
246.6 3.1 ± 1.57 3.5 ± 1.44 4.1 ± 1.09
304.0 2.7 ± 1.41 2.9 ± 1.23 3.2 ± 0.94

TABLE II
PERFORMANCE COMPARISON OF MMP AND JPEG2000, FIRST 10

MINUTES OF DATASET A (PRD).

CR JPEG2000 [19] MMP
8:1 1.52 1.96

10:1 1.86 2.34
16:1 2.74 3.29
20:1 3.26 3.86

a ventricle. The right atrium receives blood carrying carbon
dioxide from the body and moves it to the right ventricle.
The right ventricle sends this blood to the lungs, where it
is exchanged for oxygen-rich blood. This blood is received
again by the heart in the left atrium. From the left atrium,
the oxygen-rich blood goes to the left ventricle, which pumps
it throughout the body. For an efficient pumping, these four
chambers have to contract and relax in a co-ordinated fashion,
which is carried out by electrical stimuli originated from a
group of cells called sinus node.

The ECG has the objective of measuring the time variation
of these electrical stimuli (voltage differences on the surface of
the body due to the electrical fields). Fig. 16 shows a portion of
the ECG signal corresponding to a cycle of the heart beating.
The waves labeled with the letters P, Q, R, S and T correspond
to special portions of the cycle. The P wave represents the
depolarization of the atria and is usually 80 to 100ms in dura-
tion. The period of time from the beginning of the P wave to
the beginning of the QRS complex is called the P-R interval,
which is normally from 120 to 200ms in duration. This interval
represents the time between the onset of atrial depolarization
and the onset of ventricular depolarization. If the P-R interval
is greater than 200ms, a conduction defect is present (first-
degree heart block). The QRS complex represents ventricular
depolarization. The duration of the QRS complex is normally
60 to 100ms, which indicates that ventricular depolarization
is normally very fast. If the duration of QRS complex is
greater than 100ms, conduction is probably impaired within
the ventricles. The isoelectric period (ST segment) following
the QRS is the time at which the entire ventricle is depolarized
and corresponds to the plateau phase of the ventricular action
potential. The ST segment is important in the diagnosis of
ventricular ischemia or hypoxia, because under those condi-
tions, the ST segment can become either depressed or elevated.
The T wave represents ventricular repolarization and is longer
than depolarization. The Q-T interval represents the time for
both ventricular depolarization and repolarization to occur,
and therefore is an estimation of the duration of an average
ventricular action potential. This interval can range from 200
to 400ms, depending upon heart rate. At high heart rates,
the duration of the ventricular action potentials decreases,
which shortens the Q-T interval. In addition, prolonged Q-
T intervals can be a diagnostic for susceptibility to certain
types of tachyarrhythmias, being important to determine if a
given Q-T interval is excessively long.

In what follows, using the basic concepts summarized in the
last paragraph, we discuss the diagnostic information present
in the reconstructed signals shown in Figs. 12 through 15.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 9

900

950

1000

1050

1100

1150

1200

1250

9 9.2 9.4 9.6 9.8 10

t (seconds)

900

950

1000

1050

1100

1150

1200

1250

9 9.2 9.4 9.6 9.8 10

t (seconds)

(a) (b)

900

950

1000

1050

1100

1150

1200

1250

9 9.2 9.4 9.6 9.8 10

t (seconds)

900

950

1000

1050

1100

1150

1200

1250

9 9.2 9.4 9.6 9.8 10

t (seconds)

(c) (d)
Fig. 12. Register 100: (a) original; (b) reconstructed (PRD = 2.67 and CDR = 305.41); (c) reconstructed (PRD = 3.84 and CDR = 164.97); (d)
reconstructed (PRD = 6.04 and CDR = 89.57).

500

600

700

800

900

1000

1100

1200

1300

1400

9 9.2 9.4 9.6 9.8 10

t (seconds)

500

600

700

800

900

1000

1100

1200

1300

1400

9 9.2 9.4 9.6 9.8 10

t (seconds)

(a) (b)

500

600

700

800

900

1000

1100

1200

1300

1400

9 9.2 9.4 9.6 9.8 10

t (seconds)

500

600

700

800

900

1000

1100

1200

1300

1400

9 9.2 9.4 9.6 9.8 10

t (seconds)

(c) (d)
Fig. 13. Register 107: (a) original; (b) reconstructed (PRD = 1.68 and CDR = 471.84) ; (c) reconstructed (PRD = 3.15 and CDR = 242.10); (d)
reconstructed (PRD = 8.25 and CDR = 100.25).

750

800

850

900

950

1000

1050

9 9.2 9.4 9.6 9.8 10

t (seconds)

750

800

850

900

950

1000

1050

9 9.2 9.4 9.6 9.8 10

t (seconds)

(a) (b)

750

800

850

900

950

1000

1050

9 9.2 9.4 9.6 9.8 10

t (seconds)

750

800

850

900

950

1000

1050

9 9.2 9.4 9.6 9.8 10

t (seconds)

(c) (d)
Fig. 14. Register 117: (a) original; (b) reconstructed (PRD = 0.88 and CDR = 469.91); (c) reconstructed (PRD = 1.38 and CDR = 236.15); (d)
reconstructed (PRD = 2.40 and CDR = 100.65).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 10

700

750

800

850

900

950

1000

1050

1100

1150

1200

9 9.2 9.4 9.6 9.8 10

t (seconds)

700

750

800

850

900

950

1000

1050

1100

1150

1200

9 9.2 9.4 9.6 9.8 10

t (seconds)

(a) (b)

700

750

800

850

900

950

1000

1050

1100

1150

1200

9 9.2 9.4 9.6 9.8 10

t (seconds)

700

750

800

850

900

950

1000

1050

1100

1150

1200

9 9.2 9.4 9.6 9.8 10

t (seconds)

(c) (d)
Fig. 15. Register 119: (a) original; (b) reconstructed (PRD = 1.10 and CDR = 390.30); (c) reconstructed (PRD = 1.41 and CDR = 286.77); (d)
reconstructed (PRD = 2.36 and CDR = 147.79).

TABLE III
PERFORMANCE OF MMP FOR THE FIRST 10 MINUTES OF DATASET B

(PRD).

CR MMP
8:1 2.82

10:1 3.42
16:1 5.00
20:1 5.96

Figs. 12(b) to 12(d) depict an ECG suitable for diagnostic
analysis and compressed at 305.41, 164.97 and 89.57bps,
respectively. The first two reconstructed signals present only
moderate distortion in the P and T waves, being thus suitable
for diagnosis. However, the reconstructed signal at 89.57bps
(Fig. 12(d)) shows a great deal of distortion on its T wave and
ST segment; this could compromise the diagnosis of coronary
artery diseases like ischemia and angina (if present). A point
worth noticing is that, in medical practice, an ECG signal is
usually filtered prior to analysis (in order to remove noise from
the electrical network and/or muscular tremor) and would look
much like the compressed ones in Figs. 12(b) and 12(c).

The ECG in Fig. 13 presents a conduction impairment
within the ventricles. This can be deduced from the longer than
usual duration of the QRS complex. This feature is preserved
even in the reconstructed signal at the lowest rate (Fig. 13(d)),
which means that all the compressed signals can be used for
effective diagnosis.

Another ECG tracing is shown in Fig. 14. Although the
reconstructed signals are not very deformed, the ones at
the two smaller rates (Figs. 14(c) – 236.15bps and 14(d) –
100.65bps) present impairments on the top of the T wave.
However, such impairments would not affect their diagnosis.

The last signal, shown in Fig. 15, is very noisy. Therefore,
it is difficult to detect the P wave even on the original signal.
Indeed, each segment in a typical ECG is more related to
one kind of derivation (channel). For a safe analysis of the
P wave in this signal, another derivation would have to be

Q

P T

S

R

Fig. 16. ECG of a cycle of the heart beating.

considered. The first two reconstructed signals (Figs. 15(b)
– 390.30bps and 15(c) – 286.77bps) preserve most of the
features of the original signal and could be used without
problem for diagnosis. The last reconstructed signal (Fig.
15(d) – 147.79bps) presents a moderate deformation in all
the segments, but could still be used for diagnosis.

As can be seen from the above analysis, MMP-encoded
ECG signals preserve most of the diagnostically useful infor-
mation, even at very low rates. However, for a safe diagnosis,
rates over 150bps should be preferred. A point worth noticing
is that MMP always preserves, with high accuracy, the QRS
complex.

IX. CONCLUSIONS

We have applied a recently developed universal lossy
compression algorithm called MMP to the problem of ECG
data encoding. The MMP algorithm is based on approximate
multiscale pattern matching, an extension of ordinary pattern
matching. It uses a dictionary of patterns, which is adaptively
built while the data is being encoded, and a simple segmen-
tation procedure that can be trivially extended to operate on
multidimensional data. We incorporated some ideas reported
on the literature to the basic algorithm, obtaining relevant
improvements in performance, namely, the use of a prune-
join strategy and of a side-match criterion. We also added a

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 11

displacement dictionary to help MMP to explore the quasi-
periodicity of ECG signals. Originally used as an image data
encoder, MMP performed very well to encode ECG data, hav-
ing performance as good as the ones the best encoders known,
although at the expense of a higher computational complexity
(see appendix II). It also preserves most of the diagnostically
useful information, even at low rates. Therefore, we have that
MMP is an effective method for ECG compression and opens
new avenues for the development of ECG encoders.

APPENDIX I
IMPLEMENTATION DETAILS

MMP is based in approximate pattern matching with scales.
Therefore, we must define the specific scale transformation
used. In our simulations we chose:

i) When changing from v of size N0 to v
S of size N > N0,

vS(n) (n = 0, 1, . . . , N − 1) is given by:

m0(n) =

⌊

n(N0 − 1)

N − 1

⌋

m1(n) = (n (N0 − 1)) mod (N − 1)

m2 = (N − N0) mod (N0 − 1)

r =
N − N0

N0 − 1

h = vS(n − 1)

vs(n) =

v
(

m0(n)
)

, for cd1
⌊

v(m0(n)+1)−v(m0(n))
r+1

⌋

+ h, for cd2
⌊

v(m0(n)+1)−v(m0(n))
r+m2+1

⌋

+ h, for cd3

cd1 : m1(n) = 0

cd2 : cd4 and cd5

cd3 : otherwise

cd4 :
(

m1(n) > 0
)

cd5 :
((

m2 = 0
)

or
(

m0(n) < (N0 − 2)
))

(21)

ii) When changing from N0 to N < N0, vS(n) (n =
0, 1, . . . , N − 1) is given by:

u(k, n) =

v
(

k + n
⌊

N0

N

⌋

+ 1
)

, for cd1

v
(

k + n
⌊

N0

N

⌋

− 1
)

, for cd2
v

(

k + n
⌊

N0

N

⌋)

, for cd3

vS(n) =

bN0
N c

∑

k=−1

u(k, n)

cd1 : k + n

⌊

N0

N

⌋

< 0

cd2 : k + n

⌊

N0

N

⌋

> (N0 − 1)

cd3 : otherwise (22)

The input data x(n), n = 0, 1, . . . was segmented in blocks
of size N = 64. That is, we initially parse x(n) as a sequence
of 64-dimensional vectors x(n) =

{

X
0
0,X

0
1, . . .

}

, where
X

0
m =

(

x(64m) x(64m + 1) . . . x(64m + 63)
)

.
Then, each input vector X

0
m, m = 0, 1, . . . is independently

encoded using one or more vectors in the dictionary. Before
we start to encode X

0
m, the dictionary D is initialized to

D0 = {xmin, xmin + 4, . . . , xmax}, where xmin and xmax

are respectively the minimum and the maximum values of
the samples of x(n). After the encoding of the segment X

0
m,

we keep the resulting dictionary Dm and use it as the initial
dictionary to encode the segment X

0
m+1. If x(n) is too long,

the dictionary can become too large. In order to prevent this,
the dictionary can have at most 400000 elements. When the
number of elements in the dictionary reaches this limit, we
discard the oldest element in the dictionary whenever we
include a new one (by oldest we mean that element that
has not been used for the longest time). We also used a
displacement dictionary with size M = 1024. In this case,
the length of the vector containing the reconstructed samples
for the displacement dictionary is greater than the length of
the block, but the way the algorithm works is the same as
described in section VI. Due to the side-match implementation,
when attempting to encode the input vector X

0
m, the previous

encoded vector X̂
0
m−1 may be used in the evaluation of

the state dictionary for the segments X
2p−1
m , p = 0, 1, . . .,

since the left-neighbors of these blocks are in the previous
input vector. In that case, we can generalize the left-neighbor
definition to:

L
j
m =

{ (

x̂(Fx) . . . x̂(Fy)
)

, FP (j) > 0
(

x̂(Fz) . . . x̂(Fw)
)

, FP (j) = 0
(23)

where Fx = Nm + FP (j) − N j , Fy = Nm + FP (j) − 1,
Fz = Nm − N j and Fw = Nm − 1.

The specific rugosity metric used was:

R(vs
k , j) =

∣

∣

∣

∣

∣

∣Lj
m(N j − 3) − Lj

m(N j − 1) + vs
k(0)−

vs
k(2)

∣

∣ −

⌊

4

3

∣

∣Lj
m(N j − 2) − vs

k(1)
∣

∣

⌋∣

∣

∣

∣

(24)

The number of elements NS of the state dictionary DS was
calculated as:

NS = max
(

16
⌊

A
(

L
j
)⌋

, 200
)

(25)

where A
(

L
j
)

is given by (17).
The number of elements ND

S of the displacement-state
dictionary DD

S was equal to M
4 = 256.

MMP uses its dictionary as a codebook of a VQ. Therefore
its performance should improve as the dictionary becomes
larger. In order to speed up the rate of increase of the
dictionary we add four new vectors at each update, instead
of just one. When the segment X̂

j is determined we include
in the dictionary:

i) X̂
j . This is the main update, as described in section II.

ii)
(

x̂ (Fx) x̂ (Fx + 1) . . . x̂
(

Fx + N j − 1
))

and
(

x̂ (Fy) x̂ (Fy + 1) . . . x̂
(

Fy + N j − 1
))

,
where Fx = FP (j)− Nj

4 and Fy = FP (j)− Nj

2 . These
vectors were included with the side-match criterion
in mind. The idea is to help to create a better state
dictionary, since shifted versions of the least rugose
elements tend to have low rugosity too.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 12

x̂(0) x̂(1) x̂(3)x̂(2) x̂(4) x̂(5) x̂(6) x̂(7)

2L
2

X
^

(iii)

(ii)

(ii)

Fig. 17. Three new updates (j = 2).

iii)
(

x̂ (Fx) x̂ (Fx + 1) . . . x̂
(

Fx + 3Nj

2 − 1
))

,
where Fx = FP (j) − Nj

2 . This vector was added
to increase the number of occurrences of joins in the
optimization described in section IV.

These additional vectors are illustrated in Fig. 17
The MMP was implemented using multiple copies of the

dictionaries, one at each scale. The indexes output by the
algorithm were encoded by an adaptive arithmetic coder,
with an independent context for each scale. The flags of the
segmentation tree, the join flags and the flags used for the
selection of the displacement dictionary were also encoded
by the arithmetic encoder, using independent contexts at each
scale. The contexts of the arithmetic coder were used by the R-
D optimization procedure to estimate the probabilities needed
to evaluate the rates associated to each symbol.

APPENDIX II
COMPUTATIONAL COMPLEXITY

In this appendix we make a simplified analysis of the
computational complexity of MMP.

Considering that:
i) Nseg is the number of segments generated by the seg-

mentation procedure of MMP. In other words, it is the
number of leaves of the R-D optimized segmentation
tree.

ii) The dictionary size increases of one unity for each two
leaves, due to the updating procedure.

iii) The number of bits required to encode the segmentation
tree is small when compared to the number of bits used
for the dictionary indexes.

Then, the total number of bits B spent to encode X
0 is:

B =

Nseg−1
∑

k=0

log2

(

|D0| +

⌊

k

2

⌋)

(26)

The maximum size of the dictionary M , that is the size after
the encoding of the last segment, is related to the number of
segments as:

M = |D0| +

⌊

Nseg

2

⌋

(27)

Equations (26) and (27) define a function M(B) in para-
metric form (Nseg is the parameter). It should be noted that
they are still valid, even when we perform a pre-segmentation
of the input signal x(n) in a sequence of vectors X

0
m, as

described in Appendix I. In this case, the number of segments
Nseg can be greater than the length N of each X

0
m. Fig. 18

0

5000

10000

15000

20000

25000

30000

0 100000 200000 300000 400000 500000 600000 700000 800000

M
 (

el
em

en
ts

)

B (bits)

Fig. 18. Maximum dictionary size as a function of the number of bits B
(|D0| = 256).

illustrates the variation of the maximum size of the dictionary
as a function of B. From this figure, we can see that the storage
requirement is nearly linearly related to the number of bits in
the compressed file.

Also, considering that:
i) The computational complexity of a full search VQ is pro-

portional to nS multiplications, where n is the dimension
and S is the number of vectors in the codebook.

ii) The R-D optimization described in section III performs
(log2 (N) + 1) vector quantization operations on each
input vector X

0
m.

iii) The size of the dictionary is fixed during the R-D op-
timization of the segmentation tree of each input vector
X

0
m (this corresponds to the simplified optimization

solution, as in [9]).
Then, the size of the dictionary for X

0
m is given by:

S(m) = |D0| +

⌊

NsegmN

2` (x(n))

⌋

(28)

and the complexity (number of multiplications per input
sample) to encode x(n) is:

C =
N (log2 (N) + 1)

` (x(n))

b `(x(n))
N c−1
∑

m=0

S(m) (29)

Fig. 19 shows the variation of the complexity as a function
of the total number of bits, for x(n) pre-segmented in 10000
blocks of N = 64 samples each.

It is clear from Fig. 19 that the complexity increases nearly
linearly with the size of the compressed file.

A detailed analysis of the complexity of the complete
algorithm has yet to be done, but some comments are:

i) The inclusion of three additional vectors at each update
of the dictionary, as described in appendix I, increases the
complexity four times.

ii) The use of the side match criterion has the potential
to decrease the complexity, since it reduces the size of
the dictionary effectively used in the vector quantiza-
tions performed during the optimization, but it is signal
dependent (smoother signals are encoded with smaller
state dictionaries). We also have to take into account the
additional calculations needed to built the state dictionary

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 13

0

20000

40000

60000

80000

100000

120000

0 100000 200000 300000 400000 500000 600000 700000 800000

C
 (

op
er

at
io

ns
 p

er
 in

pu
t s

am
pl

e)

B (bits)

Fig. 19. Complexity as a function of the number of bits B (|D0| = 256,
N = 64, ` (x(n)) = 640000).

at each step of the R-D optimization, which increases the
complexity.

iii) The complexity of the join step of the prune-join opti-
mization is not addressed in our simplified analysis.

iv) The R-D optimization we actually use, as described in
section III, may restart the dictionary updating procedure
several times during the optimization. This increases the
complexity since the Lagrangian costs of the nodes must
be recalculated whenever the dictionary changes.

According to (29), a hardware solution using MMP would
have to perform more than 18 million multiplications per
second to compress in real time an ECG signal from the
MIT/BIH database at CDR = 200 bits/s (which corresponds
to a expected PRD = 4 %). This is not a low cost solution,
considering the technology available today, but this can change
as the hardware costs tends to continuously decrease over
the years. Also, apart from the computational complexity, the
state-of-the-art compression performance provided by MMP
can be used as a reference to future works.

ACKNOWLEDGMENT

The authors would like to thank Dr. Katia do Nascimento
Couceiro, associate professor at the Universidade Federal do
Amazonas, for the valuable help in analyzing the ECG wave-
forms, and Aguinaldo Silva, team leader at Genius Institute of
technology, for his continuous interest in this work.

REFERENCES

[1] M. B. de Carvalho, E. A. B. da Silva and W. A. Finamore, “Multidi-
mensional signal compression using multiscale recurrent patterns”, Signal
Processing: Image and Video Coding beyond Standards, No. 82, pp. 1559-
1580, Elsevier Science B. V., 2002.

[2] S. Jalaleddine, C. Hutchens, R. Strattan and W. Coberly, “ECG data com-
pression techniques-A unified approach”, IEEE transactions on Biomed-
ical Engineering, Vol. 37, No. 4, pp. 329-343, April 1990.

[3] G. Nave and A. Cohen, “ECG compression using long term prediction”,
IEEE transactions on Biomedical Engineering, Vol. 40, No. 9, pp. 877-
885, September 1993.

[4] Z. Lu, D. Y. Kim and W. A. Pearlman, “Wavelet compression of ECG
signals by the set partitioning in hierarchical trees algorithm”, IEEE
transactions on Biomedical Engineering, Vol. 47, No. 7, pp. 849-856,
July 2000.

[5] S. G. Miaou, H. L. Yen and C. L. Lin, “Wavelet-based ECG compres-
sion using dynamic vector quantization with tree codevectors in single
codebook”, IEEE transactions on Biomedical Engineering, Vol. 49, No.
7, pp. 671-680, July 2002.

[6] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs,
New Jersey: Prentice-Hall Inc., 1993.

[7] J. Ziv and A. Lempel, “Compression of individual sequences via variable-
rate coding”, IEEE Transactions on Information Theory, Vol. it-24, No.
5, pp. 530-536, September 1978.

[8] R. A. Blahut, Principles and Practice of Information theory, Cambridge,
Massachusetts: Addison-Wesley publishing Company, 1988.

[9] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images
and video”, IEEE Transactions on Image Processing, vol.3, No. 3, pp.
327-331, May 1994.

[10] M. B. de Carvalho, E. A. B. da Silva and W. A. Finamore, “Rate
Distortion Optimized Adaptive Multiscale Vector Quantization”, IEEE
International Conference on Image Processing, Thessaloniki, October
2001.

[11] R. Shukla, P. L. Dragotti, M. N. Do and M. Vetterli, “Rate-Distortion
Optimized Tree-Structured Compression Algorithms for Piecewise Poly-
nomial Images,” IEEE Transactions on Image Processing, Vol.14, No. 3,
pp. 343-359, March 2005.

[12] T. Kim, “Side Match and Overlap Match Vector Quantizers for Images”,
IEEE Transactions on Image Processing, Vol. 1, No. 2, pp. 170-185,
February 1992.

[13] E. B. L. Filho, M. B. Carvalho and E. A. B. da Silva, “Multidimensional
signal compression using multi-scale recurrent patterns with smooth side-
match criterion”, IEEE International Conference on Image Processing,
Singapore, October, 2004.

[14] J. Vaisey and A. Gersho, “Variable block-size image coding”, IEEE In-
ternational Conference Acoustics, Speech and Signal Processing, Dallas,
TX, April 1987, pp. 1051-1054.

[15] P. A. Chou, T. Lookabaugh and R. M. Gray, “Optimal pruning with
applications to tree-structure source coding and modeling”, IEEE Trans-
actions on Information Theory, vol. 35, No. 2, pp. 299-315, March 1989.

[16] C. Y. Wang, S. J. Liao and Long Wen Chang, “Wavelet image cod-
ing using variable blocksize vector quantization with optimal quadtree
segmentation”, Signal Processing: Image Communication, No. 15, pp.
879-890, Elsevier Science B. V., 2000.

[17] S. B. Yang and L. Y. Tseng, “Smooth Side-Match Classified Vector
Quantizer with Variable Block Size”, IEEE Transactions on Image
Processing, Vol. 10, No. 5, pp. 677-685, May 2001.

[18] I. H. Witten, R. M. Neal and J. G. Cleary, “Arithmetic Coding for Data
Compression”, Communications of the ACM, Vol. 30, No. 6, pp. 520-540,
June 1987.

[19] A. Bilgin, M. W. Marcellin and M. I. Altbach, “Compression of Electro-
cardiogram Signals using JPEG2000”, IEEE Transactions on Consumer
Electronics, Vol. 49, No. 4, pp. 833-840, Nov. 2003.

[20] S. G. Miaou and S. N. Chao, “Wavelet-Based Lossy-to-Lossless ECG
Compression in a Unified Vector Quantization Framework”, IEEE Trans-
actions on Biomedical Engineering, Vol. 52, No. 3, pp. 539-543, March
2005.

[21] R. E. Klabunde, Cardiovascular Physiology Concepts, Philadelphia,
Pennsylvania: Lippincott Williams & Wilkins, 2004.

Eddie Batista de Lima Filho was born in Manaus,
AM, Brazil, in 1977. He received his B.S. degree in
electrical engineering from the Universidade Federal
do Amazonas (UFAM), Manaus, AM, Brazil, in
1999, and his M.S. degree in electrical engineering
from the Universidade Federal do Rio de Janeiro
(COPPE/UFRJ), Rio de Janeiro, RJ, Brazil, in 2004.
Since 2001, he has been with the Genius Institute
of Technology, Manaus, AM, Brazil, working with
Digital TV and Embedded Systems. He is currently
working toward the Ph.D. degree in electrical en-

gineering at the Universidade Federal do Rio de Janeiro (COPPE/UFRJ).
His research interests include channel coding, distributed source coding and
video/image compression.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. XX, NO. XX, DECEMBER 2005 14

Eduardo A. B. da Silva (M’95, SM’05) was born
in Rio de Janeiro, Brazil in 1963. He received
the Engineering degree in Electronics from Instituto
Militar de Engenharia (IME), Brazil, in 1984, the
M.Sc. degree in Electrical Engineering from Uni-
versidade Federal do Rio de Janeiro (COPPE/UFRJ)
in 1990 and the Ph.D. degree in Electronics from
the University of Essex, England, in 1995. In 1987
and 1988 he was with the Department of Electrical
Engineering at Instituto Militar de Engenharia, Rio
de Janeiro, Brazil. Since 1989 he has been with the

Department of Electronics Engineering (the undergraduate dept.), UFRJ. He
has also been with the Department of Electrical Engineering (the graduate
studies dept.), COPPE/UFRJ, since 1996. He has been head of the Department
of Electrical Engineering, COPPE/UFRJ, Brazil, for the year 2002. He has
published more than 30 journal papers and book chapters, and has more than
40 papers published in international conferences. He won the British Telecom
Postgraduate Publication Prize in 1995, for his paper on aliasing cancellation
in subband coding. He is also co-author of the book ”Digital Signal Processing
- System Analysis and Design”, published by Cambridge University Press, in
2002, that has also been translated to the Portuguese and Chinese languages.
He has served as associate editor of the IEEE Transactions on Circuits and
Systems - Part I, in 2002 and 2003. He has been a Distinguished Lecturer
of the IEEE Circuits and Systems Society in 2003 and 2004. He has given
training and consultancy for several Brazilian cable and satellite television
companies on digital television. He is part of the team working towards the
development of the Brazilian Digital Television System. His research interests
lie in the fields of digital signal and image processing, especially signal
compression, digital television, wavelet transforms, mathematical morphology
and applications to telecommunications. He is a senior member of the IEEE.

Murilo Bresciani de Carvalho was born in
Petrópolis, Brazil in 1964. He received the B. E.
degree in Electrical Engineering from Universidade
Federal Fluminense (UFF), Brazil in 1986, the M.Sc.
degree in Telecommunications from Pontifı́cia Uni-
versidade Católica do Rio de Janeiro (PUC-RJ)
in 1994 and the D.Sc. degree in Signal Process-
ing from Universidade Federal do Rio de Janeiro
(COPPE/UFRJ) in 2001. Since 1994 he has been
with the Department of Telecommunications Engi-
neering of UFF. His main interests include digital

image/video processing, source/channel coding and digital signal processing.

Waldir Sabino da Silva Júnior received his B.S.
degree in electrical engineering from the Universi-
dade Federal do Amazonas (UFAM), Manaus, AM,
Brazil, in 2000, and his M.S. degree in electrical
engineering from the Universidade Federal do Rio de
Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ, Brazil,
in 2004. Since 2002, he has been with the Fundação
Centro de análise, Pesquisa e Inovação Tecnológica,
Manaus, AM, Brazil, as associate professor. He
is currently pursuing a Ph.D. degree in electrical
engineering at the Universidade Federal do Rio de

Janeiro (COPPE/UFRJ). His research at the Universidade Federal do Rio
de Janeiro is in the field of data compression, but he is also interested in
mathematical morphology and digital signal processing in general.

José Koiller received his B.S. degree in electrical
engineering from the Universidade Federal do Rio
de Janeiro (UFRJ), Brazil, in 1999, and his M.S.
degree in applied mathematics from the Instituto
de Matemática Pura e Aplicada (IMPA), Brazil, in
2001. He is currently a CAPES/Brazil fellow pur-
suing a Ph.D. degree in mathematics at the Courant
Institute of Mathematical Sciences, New York. His
research at the Courant Institute is in the field of
ergodic theory of differentiable dynamical systems,
but he remains interested in digital signal processing,

and data compression in particular.

