nal 1D DWT and 1D IDWT which beneflit from the relation
between filier cocfficients together with the decimation or interpo-
lation process involved, thus halving the number of LUTs
required per octave. Figs, | and 2 illustrale the proposed RNS-
based 1D DWT und 1D IDWT architectures for eight-tap wavelet
filters. These consist of a set of registers and multiplexers, ¥ LUTs
and two modular adder trees built with & — | modulo adders or
sublractors each. Thus, the N LUTSs required by the lowpass lilicr
path are shared to produce both the lowpass and the highpass [il-
ter products in cven and odd cycles, respectively. In accordance
with the decimation or interpolation process involved in the 1D
DWT or 1D IDWT, these products are added by two synchronous
modular adder trees clocked at half of the sampling rate by the
out-of-phase clocks CLK1 and CLK2, so that the two half the
sampling rate approximation and detail sequences, ¢ and 4@,
or double the input rate approximation sequence d§ D can he
obtained.

Simudation and results: Two's complement arithmetic and RNS
versions of the 1D DWT and 1D IDWT architectures proposcd
were implemented over FPL (ficld-programmable logic) devices to
assess the hardware complexily and performance.  Allera
FLEX10K [5] devices were used. Modern FPL device familics
offer a synergy with RNS-based architectures since modular
adders can benefit from short carey chains and pipelining while
modulo multipliers, based on small synchronous LUTSs, provide a
considerable throughput increase over binary multiplicrs. One-
and two-cctave RNS and binary 2’s complement architectures
were synthesised using VHDL to compare parameters such as the
area and performance. Bight-bit inpul samples and ten-bit filter
coefficients were assumed, so that one and lwo octaves required
21 and 34 bit dynamic ranges, respectively. Table | shows the
results obtained for six-, seven- and eight-bit RNS channels and
for binary 2's complement implementations over grade-4 speed
FLEXI10K devices. The hardware requirements wete assessed in
terms of the number of LEs (logic elements) and EABs (embedded
array blocks) while the performance was evaluated in terms of the
register-to-register maximum delay path. The performance advan-
tage of the RNS structures when compared to equally pipelined
traditional binary 2’s complement systems was up Lo 23.45 and
96.58% for the proposed one- and two-octave schemes, respec-
tively, assuming 6 bit RNS channels. [t is immediately apparent
that the advantage of the proposed RNS architectures over the
corresponding binary systems increases with the dynamic range,
since it is only necessary to add morce channels to support the
extended word width. This does not affect the overall throughpan,
which is only limited by LLUT latency.

Conclusion: RNS-FPL architectures for the orthogonal 1D DWT
and |D IDWT have been proposed which implement the analysis
and synthesis [iller banks using the relation between the filter cocf-
ficients and the decimation or interpolation process involved (o
halve the number of LUTSs required. They show 23.45 and 96.58%
performance improvements for one~ and two-octave implemerria-
tions, respectively, when compared to binary 2’s complement
architectures.
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Segmentation approach using local image
statistics

A.P. Mendonga and E.A.B. da Silva

An efficient segmentation technique is described that uses local
application of the K-means method with feature vectors based on
image statistics, It reguires little computational effort and works
well for dilTerent classes of images, comparing tavourably to
others in the literature.

Introduction: The importance of image segmentation techniques
cannot be overemphasised. Image segmentation applications range
from computer vision to image compression. The MPEG-4 sland-
ard, allowing the division of an image into video object plancs,
has increased the need for the development of image and video
segmentation techniques [1].

In this Letler, we propose a simple algorithm that processes a
natural image and generates a reduced set of regions, based on Lhe
local analysis of the mean and vaciance in a pixel’s neighbour-
hood. The image is scanned sequentially and, by the end of the
scanning process, an initial segmentation is obtained. This is then
refined by carrying out region analysis, where regions with large
arcas are identified.

right mean

71 71 72 e8[70]e0 77 66 67
71 71 73 e5(72|ea 68 66 66
72 73 75 67|73|81 67 64 63
78 78 79 80|80]80 60 54 53
[78]78[79[80 a0] 80| e0| 54 53]
78 78 79 80|80|80 60 54 53
65 71 71 71|76|84 63 51 55
70 60 70 47[52|89 8O 44 59

70 60 65 47{45|91 60 46 61

upper mean

(=]

bottom mean

left mean 8741
Vig. 1 Excinple of calewlation of CDM

Numbers represent pixel vatues and central point is target pixel
Lelt mean is 79, right mean is 65.4, upper mean is 75 and bottom
mean is 66.6. CDM is therefore 79

Local feature choice: The choice of image features heavily influ-
ences the performance of a segmentation technique. In this Letter,
we investigate the nse, for cach pixel, of a feature vector composed
of two features that we refer 1o as the closest directional mean
(CDM} and smallest directional variance (SDV). An example of
how the CDM is calculated is shown in Fig. 1, where the CDM
associaled with the central point is 79, relating io the mean in the
lefl direction, because it is the directional mean nearest 1o 80, the
current pixel value. Simulations confirm that the CDM is cffective
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and accurate in determining the boundarics of a smooth region.
We also need the SDV in order to segment regions with textures
or edges. As with the CDM, the SDV is computed using the pixels
shown in Fig. 1.

The use of the CDM and SDV can be justified by considering a
pixcl close to a region boundary. If the region is reasonably
smooth, in general at least one of the four sets of pixels indicated
in Fig. 1 will belong to the same region as the central pixel.
Therefore, its mean tends to be close to the central pixel vaiue and
the CDM characteriscs the pixel belonging to this region. Simi-
larly, the SDV effcetively characterises regions with textures or
large intensity variations. Experiments have mdicated that using
mote directions in the computation of the CDM and SDV does
not provide significant gains.

Image scanning: To find regions with similar features, an image of
dimensions K\ Np x K)N, was divided into K| x K; blocks of Np x
N, pixels. We denole each 2N, x 2N, set of four A, x N, blocks a
superblock. For each superbleck, the K-means algorithm [2] (three
iterations) was applied using at most four initial centres. Each
resulting repion was represented by the pixel the feature vector of
which had the smallest Euclidean distance to the mean feature
vector in that region. If the Euclidean distance of the feature vec-
tors of two regions was smaller than a threshold ‘LimCen’, these
two regions were merged.

The N, x N, blocks were scanned as follows:

(i) The image was scanned by rows of superblocks, from left to
right, starting from the bottom. The initial centres of the first
superblock were chosen to be the feature vectors of its four cor-
ners.

(il) For the first row, each new superblock was scanned with an
averlap of Lwo N, x N, blocks from the previously scanned super-
block. For these superblocks, the K-means algorithm was applied
with the following restrictions: two mitial centres were chosen as
the centres of the two most populated regions that crossed the
right boundary of the two A, % Np overlapped blocks, Another
centre was chosen as the pixel having, in feature space, the largest
harmonic mean of the Euclidean distances to the two previous
centres, The last centre should have the largest harmonic mean of
the distances in feature spacc to lhe other three centres, It is
important to note that the only pixels from the two overlapped N,
X N, blocks that should be included in the K-means algorithm are
those corresponding to the first two initial centres.

(iii) Each new row of superblocks had a vertical overlap of two
N, x N, blocks with the previous superblock, For the first super-
block, the enly pixels from the two overlapped blocks that were
included in the K-means algorithm were those belonging to the
two most populated regions of the superblock from the previous
row that crossed the upper boundary of the overlapped block, The
remainder of the process is as in step i0).

(iv) For the subsequent superblocks, there was an overlap of 3
N, % N, blocks with the previously scanned oncs. The initial cen-
tres were the centres of the three most populated regions that
crossed the boundaries of the overlapped blocks that touched the
lefi and bottom boundaries of the non-overlapped block. The
fourth initial cenire was chosen as the pixel with the largest har-
monic mean, in feature space, of the Euclidean distances to the
other three.

(v) By scanning the whole image, segimentation was achieved.

Segmentation refinement; After image scanning, the mean featurc
vector of each region was evalvated. We denoted this ‘Code-
Booklol', where o represents a region. All image pixels X were
then re-scanned in order to refine the segmeniation. Let o and f§
be distinct regions. We define their boundary by the equation

Xi€a Xmn€f8 li-m|<1l [j-n|<1 1)

Considering v(X}) the feature vector of a pixel Xy, if the condi-
tions

[lo(Xi) — v(Xmn)|| < LimCen (2)
|CodeBookle) — CodeBook[f]| < LimCen  (3)

are satisfied for any pixel of the boundary (eqn. 1), then the
regions o and 5 are merged.

It is possible that spatially distant regions scparated by a slow
intensity variation may be segmented as the same region. To avoid
this type of problem, cach region was submitted to an analysis
process. In this process, we began with the two most distant pixels
in feature $pace, Xy and X, If I X} = WXl = T, the two
new regions associated with X, and X,; are defined using the
following equations, where 7 is a tolerance factor:

lo(X35) — (X} €T 1€Y]
”U(Xij) - U(X‘muw)” <T (5)

Pixels X;; that satisfy either eqn. 4 or egn. 5 and are connected
will define new regions. If W X1} — WX el < 27, the value of T
in eqns. 4 and 3 is substituted by 1/2 |v(X,;.) — v(X,...)ll. This pro-
cedlure is repeated vntil a condition of stability is achieved in the
region map.

The above procedures were applied with the restriction that
regions with less than P, pixels were not allowed to be seg-
mented. If, at the end of the process, regions with less than P,
pixels existed, they were eliminated and each pixel within each of
these regions was assigned to the nearcst neighbouring region.

Fig. 2 Simulation with ‘Hardware' inage

@ Original image

b Segmented image with 44 regions

¢ Second segmented image with 22 regions

o Image with added zero mean white uniform noise ol variance 8.3
segmented in 21 regions using same paramelets as in ¢

Simulation results and conclusions: The proposed segmentation
algorithm was cvalvated using the grey scale image ‘Hardware’
(Fig. 2). The dynamic ranges of the CDM and SDV were normal-
iscd to 1 and ‘LimVar, respectively. We used the following set of
parameters; N, = 8, LimCen = 0.07, LimSat = 3000, LimVor =
0.14, P,y = 20, T = 0.25. The ‘Hardware’ itnage was segmented
into 44 regions. Making ‘LimCen’ = 0.14 and 7 = 0.4, a new scg-
mentation resulted with 22 regions. Fig. 24 shows the segmenta-
tion of ‘Hardware’ with added noise. Note that the algorithm is
quite robust to noise addition.

The computational cost of the proposed algorithm is very low
and it can be casily implemented in a digital signal processor for
real-time applications, The only procedure that involves a high
computational cost is the separation of regious joined by progres-
sive intensity variations. However, this docs not cause a significant
increase in processing time.

We have proposed an image segmentation technique using the
K-means method in a set of vectors based on (wo features, the
closest directional mean (CDM) and the smallest directional vari-
ance (SDV). This technique is cfficient, and has a low computa-
tional cost and low noise sensitivity. Another advantage of this
technique is that it does not require knowledge of either texture [3]
or background [4] statistics.
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VQ-based digital image watermarking
method

Zhe-ming Lu, Jeng-shyang Pan and Sheng-he Sun

A vector-quantisation (VQ)-based walermarking method s
presented which utilises the codebook expansion technique. This
method is  efficient, provides cnhanced secwrity and the
watermarked Image is robust against the effects of VQ
compression.  Moreover, the watermark extraction can  be
performed without the original image. Experimental results are
presented which demonstrate the cifectiveness of this algorithm,

Intreduction: Digital images and video sequences are now widely
used and distributed on the Internet and via CD-ROM, which
means that the protection and enforcement of intellectual property
vights assumes an even greater importance. Consequently, digital
image watermarking has become an arca of increased research
activily.

Digital watermarking is a method of embedding secret or confi-
dential information directly into a digital medium to establish
ownership or identity a purchaser. Most transform-domain water-
marking techniques are based on the discrete cosine transform
{DCT) [1], discrete Fourier transform (DFT) [2], discrete wavelet
transform (DWT) [3] and the chirp-Z transform [4]. Recently, we
introduced a novel watermarking technique based on veclor quan-
tisation (V) [5] by embedding the watermark information in
codeword indices. In this Letter we present a more cfficient VQ-
based image watermarking technique, in which the watermark
extraction can be performed without the original image,

Proposed VQ-based digital image watermarking: The key require-
ment in VQ-based digital watermarking [3] is to obtain a partition
S {the sccret key for walermarking) from the codebook C = {¢,,
€], <., €y }. The partition S = {5}, S, ..., Sy} of the codebook
for a certain threshold D > 0 should satisfy

M
s=1Js (1

i=1
SiNS; =% (Yiz]) @)
dcy,ep) <D (Vep,ep €8)) {3)
154 = 272 (4)

where 1 <4, < M, 01, p < N-1, dc, ¢,) denotes the squared
Euclidean distortion between ¢; and ¢, ||S}f, denotes the number
of codewords in S; and »(/) is a natural number.

Tn the original VQ-based watermarking algorithm [5], the parti-
tion S is generated by the tabu search algorithm [6]. We present a
simple codebook expansion technique which is used to produce

the partition .S in order to meet the requirements of watcrmark
extraction without the original image. Fitst, a basic codebook ¢
= e, of, .., e} is generated by the well-known Linde-Buzo-
Gray (LBG) algorithm [7], where M is the basic codebook size.
Secondly, for each basic codeword, K — 1 extended codewords are
randomly produced in its neighbouring region, each of which has
less distortion from the basic codeword than P, where K is a
natural number and K > 1, thus an extended codebook ¥ of size
(K —1) - M is generated. Finally, the basic codebook is combined
with the extended codebook and the codewords scrambled to
obtain the final user codebook C = {ey, ¢, ..., ¢y |}, whete N =
K - M. Thus, each subset in the partition S has K codewords,
including onc basic codeword from C* and K - 1 neighbouring
codewords from C¥,

eeE

Fig. 2 V() compressed Lena image (PSNR = 30.78dR)

(&2
Fig., 3 Watermarked Lena image (PSNR = 30.59dR}

Assume that the original image X is segmented into 7" blocks,
Le. X =[x, Xy, ..., Xr}. To describe the algorithm, we sel K = 4,
thus each image block can be cmbedded with two bits of water-
mark information. The embedding process is performed block by
block. For cach inpul block x,, 1 < ¢ £ T, the embedding process
can be expressed as follows:

(i) Search the nearest codeword ¢ for x, in the basic codebook.
(il) Translate the corresponding two bits of watermark informa-
tion into an integer g; for example, if the two bits of the water-
mark are ‘10°, then g = 2.

(i) If g = 0, find the corresponding index # of ¢/ in the user code-
book and transmit it Lo the recciver through the channel (or save
it in a file); otherwise, assume that the three extended codewords
of ¢/ in the extended codebook are {cf, 51, €f2}, where j =
3 -, then find the corresponding index # of ¢, in the user
codebook and transmit it to the receiver through the channel (or
save 1t in & file).

(iv) Receive the index # {or read the index » from the file) and use
the codeword ¢, in the user codebook o reconstruct the input
image block.
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