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Abstract. The Multidimensional Multiscale Parser (MMP) algorithm
has been proposed recently as a universal data coding method. MMP has
proved to be a very powerful coding method for images, as for other types
of signals. Experimental tests showed that MMP is able to achieve bet-
ter results than the traditional transform-based image coding methods,
particularly for images that do not have a low-pass nature.

These promising results motivated the use of MMP for residual error
encoding in hybrid video coding algorithms. This paper presents the first
results of these experiments, performed using a H.264/AVC based video
encoder, but using MMP to encode the motion compensated residual
data, for the P and B slices.

Experimental results show that, even in this not fully optimised ver-
sion, this method is able to achieve an approximately equivalent perfor-
mance to the H.264/AVC. This demonstrates that MMP is an alternative
to the transform-quantisation paradigm for hybrid video coding that is
worth investigating.

1 Introduction

Hybrid video coding schemes have been almost ubiquitous in video coding stan-
dards. They mostly use block based motion estimation and compensation to
reduce the energy of the residual image. The error image is then encoded using
transform coding and quantisation. Such residual error encoding is a legacy from
the top image encoding methods, which traditionally use algorithms based on
the transform-quantisation paradigm with excellent results.

The most recent standard for video coding, H.264/AVC (H.264) [1] also uses
a transform based residual encoding method, that has been highly optimised for
coding efficiency.
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In this work we introduce an algorithm to encode the motion predicted data
in an H.264 based video coder, which is based on an alternative paradigm to
the transform-quantisation. This algorithm is referred to as Multidimensional
Multiscale Parser (MMP) [2], because it uses an adaptive dictionary to approxi-
mate variable-length input vectors. These vectors result from recursively parsing
an original input block of the image. Scaling transformations are used to resize
each dictionary element to the dimension of the block segment that is being
considered.

Previous results [2] show that MMP performs well for a wide variety of input
images, ranging from smooth grayscale images to text and graphics. This lends
it a universal flavour. Therefore, one expects that it should also perform well
for encoding residual images. This was confirmed by results in [3], where MMP
is used to encode intra prediction residuals. This motivated the use of MMP
for encoding the motion compensated residual data in the H.264 video coder,
replacing the adaptive block size transform (ABS) defined in this standard. We
refer to it as the MMP video encoder.

This paper presents the first results of this encoder. MMP is used to encode
the motion compensated residual image in P and B slices. Since our aim is to
assess the performance of MMP for motion compensated residual data, the intra
macroblock (MB) residues are encoded using the original H.264 transform. All
other syntax elements are also encoded using the techniques defined in H.264
(JM9.3) reference software [4].

Results of the first tests have shown that the MMP video encoder has an
overall performance comparable to that of H.264. Taking into consideration that
in these tests the rate-distortion decisions are the same ones used in H.264, we
believe they have not been optimised for the use of MMP. This suggests that
there might be some room for improvement, and therefore that it is worth inves-
tigating MMP as an alternative to the present transform-quantisation paradigm
in video coding.

In the next section we briefly present the MMP algorithm for image coding.
Section 3 describes the new MMP video encoder, and in section 4 the first
experimental results are presented and compared with the ones of H.264 high
profile. Conclusions of this work can be found in section 5 along with a brief
outline of planned future work.

2 The MMP Algorithm

Although the MMP algorithm was initially proposed as a generic lossy data
compression method, it is easily expandable to work with n-dimensional data,
and has been successfully applied to two dimensional data. In this section we
describe the most important aspects of the MMP algorithm applied to image
coding. An exhaustive description of the method can be found in [2].

MMP is based on approximations of data segments (in this case image blocks),
using words of an adaptive dictionary D at different scales. For each block X l

in the image, the algorithm first searches the dictionary for the element Sl
i that
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minimises the Lagrangian cost function of the approximation. The superscript l
means that the block X l belongs to level l of the segmentation tree (with dimen-
sions (2�

l+1
2 � ×2�

l
2 �)). Square blocks, corresponding to even levels, are segmented

into two vertical rectangles.
The algorithm then segments the original block into two blocks, X l−1

1 and
X l−1

2 , with half the pixels of the original block, and searches the dictionary of
level (l − 1) for the elements Sl−1

i1
and Sl−1

i2
that minimise the cost functions for

each of the sub-blocks.
After evaluating the rate-distortion (RD) results of each of the previous steps,

the algorithm decides whether to segment the original block or not. Each non-
segmented block is approximated by one word of the dictionary (Sl

i). If a block is
segmented, then the same procedure applied to the original block is recursively
applied to each segment.

The resulting binary segmentation tree is encoded using two binary flags:
flag ’0’ represents the tree nodes, or block segmentations and flag ’1’ represents
the tree leafs (sub-blocks that are not segmented). These flags are not used for
blocks of level 0, that can’t be further segmented.

The binary tree is encoded using a preorder approach: for each node, the sub-
tree that corresponds to the left branch is first encoded, followed by the right
branch sub-tree. In the final bit-stream, each leaf flag is followed by an index,
that identifies the word of the dictionary that should be used to approximate the
corresponding sub-block. These items are encoded using an adaptive arithmetic
encoder.
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Fig. 1. Segmentation of a 4×4 block and the corresponding binary tree

Figure 1 represents the segmentation of an example block and the segmen-
tation tree that MMP uses to encode it. In this example, i0. . . i4 are the indexes
that were chosen to encode each of the sub-blocks, and so this block would be
encoded using the following string of symbols:

0 1 i0 0 1 i1 0 0 i2 i3 1 i4.

The RD optimisation of the segmentation tree, T , that is used to encode each
block, is performed evaluating the Lagrangian cost for every segmentation de-
cision, given by J(T ) = D(T ) + λR(T ), where D(T ) is the distortion obtained
when using T and R(T ) is the corresponding rate.
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Unlike conventional vector quantisation (VQ) algorithms, MMP uses approx-
imate block matching with scales and an adaptive dictionary.

Block matching with scales is an extension of the ordinary pattern matching,
in the sense that it allows the matching of vectors of different lengths. In order
to do this, MMP uses a separable scale transformation T M

N to adjust the vectors’
size before trying to match them. For example, in order to approximate an orig-
inal block X l using one block Sk of the dictionary, MMP has to first determine
Sl = T l

k[S]. Detailed information about the use of scale transformations in MMP
is presented in [2].

MMP uses an adaptive dictionary that is updated while the data is encoded.
Every time a block is approximated by the concatenation of two dictionary
blocks, of any given level, the resulting block is used to update the dictionary,
becoming available to encode future blocks of the image, independently of their
size. This updating procedure for the dictionary uses only information that can
be inferred by the decoder exclusively from the encoded segmentation flags and
dictionary indexes. Thus, MMP has the ability to learn the patterns that pre-
viously occurred on the image, adapting itself to the data being encoded. This
characteristic gives it a universal flavour.

3 The MMP Based Video Encoder

In this section we describe the main features of the MMP video encoder. It is
based on the JM9.3 reference software of H.264 video coding standard [4]. All
the encoding modes are inherited from H.264, as well as the rate-distortion (RD)
encoding decisions.

The main difference between the MMP video encoder and H.264 is related
to the motion compensated residue data encoding method for the P and B
macroblocks: MMP replaces the original DCT integer transform defined in [1].

One important feature of H.264 is the use of adaptable block size transforms.
Such transforms provide a significant gain in coding efficiency when compared
with the fixed size blocks (either 4×4 or 8×8) used by its predecessors. Such scale
adaptability allows saving bits by the use of large blocks where the residual is
mostly uniform, while providing good coding accuracy through the use of small
blocks in the cases where the residue data is more detailed. It is important to
note that scale adaptability is a feature inherent to MMP. In fact, this is one of
the strong reasons for its good coding performance.

3.1 Intra Encoding

The H.264 recommendation defines three different partition block sizes for intra
MB’s: 16×16, 8×8 and 4×4. Intra prediction is done using four possible pre-
diction modes for Intra 16 × 16 macroblocks and nine prediction modes for the
other two partition sizes.

Previous tests compared the efficiency of MMP and H.264 in encoding the
intra residue for still digital image coding. The MMP-Intra method uses a set of
prediction schemes similar to those defined for H.264 intra encoding, but encodes
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the prediction residue with MMP. Details about this method and experimental
results comparing its performance against H.264 and JPEG2000 are presented
in [3].

As previously stated in the Introduction, in this version of the MMP video
encoder all the intra MB’s are encoded using exactly the same procedure as
H.264, including the same integer DCT transform. The reason for this is that
we are mainly interested in assessing the performance of MMP for motion com-
pensated residual coding. We do so by comparing the coding efficiency of MMP
video with the one of the H.264 encoder. This comparison is only effective if the
reference frames used by both methods are the same. This would not be the case
if MMP was used for intra MB coding.

3.2 Inter Encoding

Inter MB coding involves two major steps: motion estimation and coding of the
motion compensated residue. Motion estimation consists in the search of the
motion vector that allows the best result for the block residue, in a RD sense.
H264/AVC uses quarter-pixel precision for the motion vectors and performs the
motion estimation in three separate steps. First a full search determines the best
motion vector with full pixel precision. After this, the best motion vector with
half and quarter pixel precision is determined around the position obtained in
the previous step.

In addition, motion compensation in H.264 is done using one of seven modes,
that are related to the partitioning possibilities of a 16x16 luma macroblock.
Each partition of a MB has its own motion vector, that is used in the motion
compensation of the corresponding sub-block. Thus, motion estimation in H.264
implies the optimisation not only of the motion vectors, but also of the partition
block size that is used for motion compensation.

The existence of several partition modes allows the motion compensation
to be performed using a block size that optimises the distortion of the motion
predicted decoded residue versus the bit-rate coding cost, corresponding to the
motion compensation data plus the residue transform coefficients. In H.264, the
cost of each mode is estimated by evaluating the distortion of the transform
coding of the residues, either by using the sum of absolute differences (SAD) or
the sum of absolute transformed differences (SATD).

The current version of the MMP video encoder uses exactly the same motion
estimation procedure. This has implications on the efficiency of the MMP en-
coder, because the motion estimation process returns a set of motion vectors that
are the best in the “DCT point of view”, meaning that these vectors minimise a
cost function where the distortion is determined using the SA(T)D and the rate
takes into account the cost of the DCT coefficients. These measurements are not
related to those produced by the MMP coding, and we can expect a performance
loss due to this fact. Nevertheless, this process favours a direct comparison be-
tween the encoding efficiency of MMP and the DCT, because the residue patterns
that are generated by the motion estimation/compensation process tend to be
approximately the same for both encoders. One should bear in mind, though,
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that we can expect an improvement in performance once the motion estimation
process uses a cost function more related to the MMP characteristics.

H.264 encodes the motion compensated residue with a block size for the
transform coding that depends on the partition size that was used for the mo-
tion estimation. The MMP video coder does not take this partition size into
account and considers the entire 16×16 residue block, that is composed by the
concatenation of the several partition blocks. This is not a problem because
MMP is able to segment the original 16×16 block in a way that optimises the
distortion of the decoded residue. Once again, the adaptability of the MMP
encoding algorithm plays an important role in the efficiency of the method.

All motion compensation information, like the partition modes and the mo-
tion vectors for each block, is transmitted by the MMP video encoder using the
same techniques as H.264, as described in [1].

4 Experimental Results

The MMP video encoder described in the previous section was implemented and
experimental tests were performed.

In this test, MMP video coder uses six independent dictionaries: one for each
of the YUV components of the P and B slices. The use of different dictionaries
allows each of them to efficiently adapt to the specific predicted error block
patterns of each type of source data. This has the additional advantage of limiting
the size of each dictionary, reducing the computational complexity.

When used to encode prediction error blocks, MMP uses initial dictionaries
in the scale 1×1 (level 0) with values in the range from -255 to 255. The initial
dictionaries for the other levels are obtained from this one by scale transforma-
tion. The scale transformation and dictionary updating procedure are the same
as those described in [2].

The MMP coder was compared with the H.264 high profile video coder using
version 9.3 of the reference software. Both encoders were tested using the first
99 frames of the CIF Foreman sequence, 4:2:0. Only one I frame was used with
one skipped frame and one B frame (I B P B P pattern). We used the variable
bit rate mode, testing the encoders for several quality levels of the reconstructed
video sequence. This was done by varying the QP parameter for the I/P and B
slices.

Figure 2 represents the average PSNR for the luminance component of P and
B frames versus the average number of bits used to encode each frame. For the
P frames the RD curves are very close, indicating that, even using sub-optimal
rate-distortion decisions, MMP can perform as well as the ABS transform. Figure
2 also shows that the MMP video coder tends to achieve better RD results for
coding B frames than H.264. This can be explained by the fact that B frames use
bidirectional motion estimation, which generates low energy residue patterns. The
H.264 encoder uses a coarser quantisation scheme for these patterns. On the other
hand, MMP is able to “learn” these residue patterns very efficiently and use them
along the sequence, tending to encode such residue blocks better than H.264.
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Fig. 2. Average luminance PSNR versus average number of bits per frame for P and
B frames
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Fig. 3. Average PSNR versus bit rate for the YUV frame components

Figure 3 plots the average RD curves for each of the colour components.
We can see that for the luminance component, both encoders have a similar
performance, but there is some loss for the chroma components for the MMP
video coder. An explanation for this is the fact that, since the chroma compo-
nents are much smaller and have much less energy than the luminance, then the
chroma dictionaries are not able to adapt to the residue patterns, specially at low
rates. However, for high bit rates, MMP segments the block and compensates
the small-size dictionaries.
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A possible way to overcome this problem would be the use of a single dic-
tionary for both chroma components, or even to devise ways of making the
dictionaries to grow faster (for example, by introducing extra blocks related to
the original pattern).

5 Conclusions and Future Work

This paper presents the first results of the use of the Multidimensional Multiscale
Parser (MMP) for hybrid video coding. MMP is used instead of the integer DCT
in a H.264/AVC based video coder, to encode the prediction residual data of the
motion compensated macroblocks.

Experimental results have shown that the MMP video coder is able to achieve
better results than H.264 for the luminance component of B and P slices, but
still has some losses for the chroma components. Nevertheless, the current results
demonstrate that MMP is an alternative to the integer DCT used by H.264 that
is worth investigating.

The results presented in this paper show much room for further improve-
ments, because the MMP video encoder has not yet been thoroughly optimised
in a rate-distortion sense. Future work will address this issue, as well as several
other questions that are relevant to the performance of the MMP video coder.
Among them, one can distinguish the use of adaptive block size MMP to encode
the motion compensated residue partition blocks, the use of MMP on intra MB’s
and the optimisation of the deblocking filter for the MMP-video reconstructed
frames.
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