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ABSTRACT

In this work, we propose a novel approach to detect and track, in
videoconference sequences, six landmarks on eyes: the four corners
and the pupils. Detection is based on the Inner Product Detector
(IPD), and tracking on the Lucas-Kanade (LK) technique. The nov-
elty of our method consists in the integration between detection and
tracking, the evaluation of the temporal consistency to decrease the
false positive rates, and the use of geometrical constraints to infer the
position of missing points. In our experiments, we use five high def-
inition video sequences with four subjects, different types of back-
ground, fast movements, blurring and occlusion. The obtained re-
sults have shown that the proposed technique is capable of detecting
and tracking landmarks with good reliability.

Index Terms— Computer Vision, Video Tracking, Face Track-
ing, Eye Tracking, Object Detection.

1. INTRODUCTION

There has been an ever growing interest in augmented reality sys-
tems, specially the ones that can provide a 3D experience. These
systems can either display or render multiple views of a scene or ob-
ject. Then, in these cases, it is often important to know the position
of the viewer’s eyes relative to the display, so that the proper view
can be rendered or chosen [1]. Therefore, there has been a growing
need for robust eye tracking methods. In this work, we address the
problem of locating and tracking, in video conference sequences, six
landmarks on the eyes, namely the four corners and the pupils. Our
goal is to combine features of detectors and trackers in order to deal
with frame cuts, fast camera movements as well as partial and total
occlusion, thereby increasing robustness of the tracking.

The proposed method presents three main contributions. The
first is the integration between detection and tracking. The detection
is performed using a correlation filter-based detector called Inner
Product Detector (IPD) [2]. To track the detected points, we use the
well known Lucas-Kanade optical flow tracker [3]. The proposed
integration is based on the analysis of the histogram of the distances
between the detected and tracked points. The second contribution
further reduces the false positive rates by verifying the temporal
consistency of the obtained points. Although at this step we have
a high hit rate and good precision, there are missing points in several
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frames, leading to high false negative rates. The third contribution
aims at using the geometry of the face in order to estimate the missed
points.

The remaining of this paper is organized as follows. In the next
Section, we present a background on the detection and tracking tech-
niques employed. Section 3 describes how to obtain a low false pos-
itive rate by integrating detection and tracking together with an anal-
ysis of the temporal consistency. In Section 4, we devise a method to
decrease the false negative rates by employing geometric constraints
to estimate the position of the missed points. The experimental pro-
cedure, as well as the obtained results and their discussion, are pre-
sented in Section 5. Finally, in Section 6, we conclude and present
suggestions for future work.

2. DETECTION AND TRACKING

In the next two subsections, a brief description of the employed de-
tector and tracker is given. More detailed explanations can be ob-
tained in [2] and [3], respectively.

2.1. Feature Detection using an Inner Product Detector

In correlation filtering, a pattern is detected by computing the cross
correlation between the filter and an unknown signal [4]. The out-
put of the filter is large when the desired pattern is input, and small
otherwise. This technique has the advantage of being robust to small
variations of the desired pattern. In this work, in order to detect land-
marks on eyes, we use a correlation filter based detector, called Inner
Product Detector (IPD) [2]. Suppose we define a problem involving
N classes and a random variable X, whose realization x belongs to
a class An, n ∈ {1, 2, · · · , N}. The objective is to obtain a detector,
hAn

, for which the dot product with an unknown sample x is equal
to one if it belongs to An and zero otherwise. The least squares
solution for hAn

is [2]

hAn
=

 
NX

i=1

p(Ai)RAi

!−1

p(An)μAn
, (1)

where μAn
is the sample mean of the class An, RAi

is the autocor-
relation matrix of the samples from class Ai and p(Ai) the a priori
probability of a sample to belong to the class Ai. Note that, since the
estimate RAi

should be invertible, the number of samples from class
Ai used in the estimate of hAn

must be larger than the dimension of
the vector X.

Since for real world data the classes are in general not orthogo-
nal, the inner products tend not to be strongly distributed around 0
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and 1. In other words, the classifier in equation (1) is weak. To over-
come this problem, a stronger classifier is built from it using boost-
ing techniques [5] through a cascade of several IPD classifiers. The
output of the IPD consists of several points that are candidates for a
true positive detection. in the remainder of the paper, we refer to this
set of points as a cloud of points. Further post-processing must be
carried out in order to discard the false positives. The IPD classifiers
used in this paper have been trained using the BioID database [6].
For more details, the reader is referred to [2].

3. DETECTION AND TRACKING INTEGRATION
CONSIDERING TEMPORAL CONSISTENCY

One of the characteristics of the IPD detector is that, since it is es-
sentially based on dot products, it is fast enough to be used in real
time applications. In addition, as mentioned in Subsection 2.1, the
output of the detector is a cloud of points. These points tend to be
grouped in small clusters which are close to each other and highly
correlated with the desired output [2].

In this work, we use the IPD cascade’s output to feed a tracker.
To track the features, we use the well known Lucas-Kanade algo-
rithm (LK), an optical flow based tracker [3]. In addition, we use the
consistency between the LK tracker and the IPD output in order to
discard unreliable detections. In order to do so, we have to compute
histograms from the cloud of points as follows:

(i) Let j be the index of the frame. Compute the vector median of
the cloud of points in order to obtain a single point yj .

(ii) Feed the tracker with the point yj−1 detected in the previous
frame and track it in the current one, to get the estimated point
y′

j .

(iii) Let xi (i = 1, 2, · · · , N ) a point in a cloud of N points and
di the distance between the tracked point y′

j and a point xi.
Compute the histogram of the distances di

(iv) Analysing the histogram, we can distinguish a reliable detec-
tion from an unreliable one (see the description below about
the histogram analysis). If the detection is reliable, use de vec-
tor median of the cloud yj as output and go to step (ii). If the
detection is not, do not provide an output and go to step (i).

From the analysis of the typical histograms, we can distinguish
four types of behavior, which are illustrated in Figures 1(a) to 1(d).
The histogram in Figure 1(a) is unimodal, which tends to correspond
to a single cluster close to the desired pattern. This is an indica-
tion of a reliable detection. The histogram in Figure 1(b) has two
modes. One of them will in general correspond to a cluster close to
the desired point (actually, the histogram may have more than two
modes, as long as they are clearly defined). This case is a candi-
date for a reliable detection. This is so because, as discussed later in
this section, we can determine the desired cluster by analyzing the
temporal behavior of the centroids of these clusters. The other two
typical histograms, depicted in Figures 1(c) and 1(d), indicate unre-
liable detections, and the corresponding points should be rejected.
The histogram in Figure 1(c), that has only a few points, appearing
as several modes, is generally related with isolated noisy points. The
histogram in Figure 1(d) has a “uniform” appearance (does not have
any clear peak). Such behavior corresponds to a cloud with too many
scattered points, that also indicates an unreliable detection.

At this point we have a temporal sequence of clusters close to
the desired pattern (note that, as a result of the histogram analysis,
there can be some frames with no reliable clusters). We can choose
the best cluster as well as discard further unreliable clusters by ana-
lyzing the temporal evolution of these clusters. We use the strategy
illustrated in Figure 2. The dots represent the points of the cloud
and the crosses, the centroids of these clusters. These centroids are
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(c) Histogram with few points.

Distance [pix]

N
u
m

b
er

o
f
p
o
in

ts

(d) Uniform histogram.

Fig. 1. Typical histograms obtained from an intermediate/difficult
sequence for the inner corner of the right eye.

obtained by employing a Hierarchical Clustering algorithm [7] at the
cascade’s output. In the example in this figure, we assume that all
frames up to frame k−2 have already been processed, and therefore
all their clusters are reliable. We choose the desired cluster as the
one whose centroid lies inside a disc with a radius of 4 pixels, cen-
tered in the centroid of a cluster from one of the 30 previous frames.
This center is chosen as the centroid of the cluster from the closest
past frame that has a reliable output. If there is no such disk in the
past 30 frames, then the output of the current frame is considered as
unreliable, and is thus discarded.

frame k − 1frame k − 2 frame k ......

Fig. 2. Temporal evolution of the cascades output. The frames are
separated by the dashed lines. The desired cluster at a frame k is
selected by considering the temporal evolution of the cluster at pre-
vious frames. Note that the closest reliable cluster is at the frame
k − 2 and there is no reliable output at frame k − 1.

The centroids of the clusters that remain reliable after the his-
togram and temporal consistency evaluation have a high probability
of corresponding to the desired features. Therefore, we have a de-
tector output with a low false positive rate. However, many frames
are marked as having unreliable outputs, which gives rise to a high
false negative rate (see the graphs on the left in Figure 5). To over-
come this problem we have devised a method whereby, whenever
there is no reliable detection, we determine the location of a likely
detection based on the geometry of the face. This is described in the
next section.

4. GEOMETRIC CONSISTENCY

As mentioned previously, the feature points of the eyes that we want
to track are the left and right outer corners, left and right inner cor-
ners and the two pupils. Considering that real world faces are far
enough from the camera, it is reasonable to suppose that such fea-
ture points lie on a plane. Then, the correspondence of eyes’ feature
points in two different frames can be described by a 2D homography
H [8].
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To obtain this homography H, we assume that, between frames,
the face is translated by t = (tx, ty) and is rotated by θ around an
axis parallel to the camera’s principal axis. In addition, we assume
also a rotation around an axis orthogonal to the 3D scene’s horizontal
plane, that can be modeled as a scaling s along the camera plane’s
horizontal direction.

Using this motion model, the desired transformation has four
degrees of freedom. As each point correspondence between frames
puts two restrictions on the homography H, we need two correspon-
dences to determine H. Since we can assume that the four corners of
the eyes comprise a rigid body, we can use these points as references
to obtain the desired homography. Therefore, if at least two eye cor-
ners have been reliably detected in the current frame, and there is a
previous frame in which all eye corners have been reliably detected,
the missed points from the current frame can be estimated.

Figure 3 depicts the H parameters t, θ and s, where xi is a point
in a previous frame and x

′

i is its correspondence in the current one.
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Fig. 3. Parameters necessary to compute the homography H be-
tween eye corners in two frames. Note that putting the reference on
x1, we have: t = x

′

1, θ = α′ − α and s = d′/d.

After obtaining the parameters in Figure 3, a missed corner can
be estimated using the expression

x
′

i = Hr(θ)Hr(α)HsHr(−α)xi + t, (2)

where

Hr(γ) =

»
cos γ − sin γ
sin γ cos γ

–
, Hs =

»
s 0
0 1

–
. (3)

When there are more than two correspondences, each pair is used to
compute a different homography. The missed point is the average of
the points obtained employing each possible homography.

Since the pupils can move relatively to the eyes’ corners, we
have to use a different geometrical model for them. It is based on the
reasonable supposition that the distance between the pupils is con-
stant, and also that the line connecting them remains parallel to the
lines connecting the two inner or the two outer corners of the eyes.
We can estimate the position of a missing pupil in the current frame
provided that we know: (i) the position of the eyes’ corners in both
frames; (ii) the position of the pupils in the previous frame, and (iii)
the position of one pupil in the current frame. This model is illus-
trated in Figure 4. In this illustration, the right pupil is represented
by a cross and the left pupil by a square. The coordinates (δx, δy)
of the pupil on the right eye relative to the outer right eye corner are
the same as the coordinates of the left pupil relative to the left inner
eye corner. These coordinates can be used to determine the missing
pupil position.

δx

δy

δy
δx

Fig. 4. Geometric model for the location of the pupils.

5. RESULTS AND DISCUSSION

In this section, we present the used database, the experimental pro-
cedure and the obtained results. In Subsection 5.1, we describe the
database. The accuracy measure used to assess the performance of
our method is described in Subsection 5.2. Finally, in Section 5.3,
we present and discuss the obtained results.

5.1. Used database

In our experiments, we have used five high definition (1080p) video-
conference sequences with 300 frames each. The sequences have a
moderate degree of compression artifacts. In these sequences, we
have four subjects with different skin colors, different types of back-
ground, movement and face occlusion. The sequence we refer to
as “easy” has little movement of the subject and no occlusion. The
one referred to as “intermediate/difficult” has blur, a subject with a
moderate amount of movement and no occlusion. The other three
sequences are considered difficult since they have blur, subjects with
fast movements, and partial or total occlusion of the face by one of
the hands. We manually annotated 13 fiducial points on the faces
(that include the eye’s corners and pupils) in all 300 frames. The
sequences, as well as the manual annotations, are available at [9].
As this work is the first one with this database, a comparison with
previous work could not be performed yet.

Note that, since we are dealing with videoconference sequences,
the pre-processing scheme used by [2] is capable of dealing with
illumination and scale changes. This is so because it normalizes the
face size as detected by the Viola-Jones algorithm [10], and employs
illumination normalization [11].

5.2. Evaluation

To assess the performance of our method, we employ an accuracy
measure based on the one proposed in [12]. It is the displacement
between the reference and the automatic label normalized by the cor-
rect inter-ocular distance, that is,

e =
‖la − lm‖

deyes

, (4)

where la is the coordinate of the automatic label given by the pro-
posed method, lm is the coordinate of the manually annotated point
(ground truth), and deyes is the inter-ocular distance obtained from
the ground truth.

For each landmark of each sequence, we computed the hit rate
against the percentage of the inter-ocular distance that is considered
as a correct detection. We plotted the hit rate considering: (i) only
the cases for which the algorithm provides an output, taking into
account only FP (False Positive) errors, and (ii) all cases, even the
ones which the algorithm outputs no points, taking into account both
FP and FN (False Negative) errors.

5.3. Results and Discussion

Due to space restrictions, we present in this paper only the results
for one intermediate/difficult sequence. Also, since the detection
results tend to be equivalent for the left and right eyes, we show the
results of only three points. The remaining curves (all points of all
sequences) can be seen in [9].

In Figure 5, the plots on the left were obtained without using
the geometrical consistency to correct the missing points, whereas
the plots on the right were obtained using the geometric consistency.
The plots on the left show that the use of histogram analysis and
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temporal consistency was capable of providing a very low false pos-
itive rate, but at the expense of a high false negative rate. By com-
paring them with the plots on the right, we can see that, by using
the geometric consistency one could significantly decrease the false
negative rate, at the expense of a small increase in false positive rate.
These results were consistent for all sequences.

However, the analysis of the results for the difficult sequences [9]
shows that, although the use of the histogram analysis and temporal
consistency are able to provide a reasonably low false positive rate,
the use of geometric consistency is not as effective as in the cases of
easy and intermediate/difficult sequences. This happens because for
such sequences there is a large number of frames where no reliable
points are detected. In addition, the false positive rates are not as
low as in the easier sequence. These points in errors lead to wrong
geometrical models, resulting in wrong points being put in place
of missing ones, thus increasing the false positive rates. However,
one must note that in many practical cases the sequences used will
be more like the easy and the intermediate/difficult sequences. In
addition, most known methods tend to fail in the case of sequences
such as our hard sequences (with blur, fast movement and occlusion
by one of the hands).
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Fig. 5. Results for an intermediate/difficult sequence. Left: only de-
tection/tracking integration and temporal consistency. Right: same
as on the left, but with added geometric consistency.

6. CONCLUSIONS

In this paper, we describe a novel method to robustly detect and track
six landmarks on eyes. The proposed method has two main contri-
butions. The first one is the integration between detection (in this
paper performed by an Inner Product Detector) and tracking (us-
ing the Lucas-Kanade algorithm). Through this integration, based
on the analysis of the histogram of the distance between tracking
and detection, as well as temporal consistency, we can find candi-
date points with low probability of false positives and reasonable
accuracy. However, this is obtained at the expense of a high false

negative rate. The other main contribution of this paper aims at re-
ducing this false negative rate by employing geometrical consistency
between frames. This geometrical consistency is carried out by us-
ing the face geometry to impose localization constraints and recover
some missed points. Note that these results are achieved with rea-
sonably low computational complexity. The proposed detectors have
been implemented in C++ using the OpenCV library, and can run in
real time on a fast PC.

The results show that the proposed method performs well for
easy and intermediate/difficult sequences. However, it needs to be
improved to deal with hard sequences, where we have a great deal
of fast movement, blur and occlusions. It is important to point out
that the integration between detection and tracking developed in this
paper can be used with several tracking methods currently available.
In addition, it can also be used with other types of detectors, as long
as they can be adapted to output a cloud of points instead of a single
point. There is a work in progress where detectors more robust than
the IPD are being investigated, as well as better performing trackers,
such as particle filtering [13] or the one in [14].
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