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Abstract�This work presents a video-based sequence synchro-
nization algorithm to be used in real-time video surveillance
applications. The signals are aligned based on an online dynamic
time warping approach that uses only video content information.
The algorithm was tested in the alignment of reference and
target videos acquired in a cluttered industrial environment
with a moving camera. During each recording, the camera
follows approximately the same trajectory but its speed along
the trajectory may differ among recordings, thus generating
time warping between the videos. The results shows that, when
considering both alignment error and computational complexity,
the use of the mean squared error as similarity metric leads to the
best performance among metrics such as the SSIM, absolute error
or even sophisticated matching techniques such as histograms
of oriented gradients. The proposed method was also tested
in a real-time application. Results show that the instantaneous
alignment computation of a target frame can be performed
successfully, at the cost of a three-fold increase in the error when
compared to the case when latency is allowed.

I. INTRODUCTION

Since it is easy to acquire signals from several portable
sensors, surveillance systems should ideally be able to analyse
multiple information from a large number of sources. In most
such systems, several audio and video signals acquired from
the same location are used to detect any anomaly or unusual
behavior. This creates a demand for temporal alignment tech-
niques, so that the contents of each signal can be identi�ed
and compared.

The most relevant technique for aligning two time series is
dynamic time warping (DTW) [1], [2]. DTW considers that
one sequence can be shrinked or stretched along the time axis
to match the other. The problem of �nding the best mapping
can be described as the search for the path that minimizes the
matching error between sequences. This technique has been
initially used in the context of automatic speech recognition,
but it has already been successfully applied in a wide range
of applications, such as biomedicine [3], entertainment [4] and
data-mining [5].

The standard DTW has a computational complexity that
is quadratic with the number of elements of the sequences.
Some constraints can be applied to save computation in the
cost matrix. Sakoe-Chiba [2] bounds the path to lie inside a
region around the diagonal of the cost matrix, while Itakura
[1] restricts the path to be inside a parallelogram, requiring
that one sequence will never be more than a certain number
of times faster than the other sequence. Other approaches, such
as the one in [6], prune the DTW matrix if the cost reaches a

given threshold. A DTW algorithm with linear computational
complexity was developed by Salvador et. al [7]. It employs a
multi-resolution approach to spare computation. A drawback
that is shared by these methods is the fact that the cost matrix
must be computed beforehand. This creates dif�culties for
online processing.

A method that presents an online DTW with linear complex-
ity was developed by Dixon [8]. This online DTW performs
incremental alignment between two signals when one of them
is being received in real time, so only a subsequence of one
of the signals is currently known. This algorithm is applied
in the alignment of audio signals to provide live analysis of
musical performance.

A temporal alignment technique is frequently one of the
steps of a video anomaly detection algorithm. In [9] a tech-
nique for detection of objects along a road was proposed. It
applies a DTW algorithm to align present and past camera
images using as similarity metric the position of the epipole
between images. After aligning the frames, the algorithm
applies a road registration and objects are detected by an image
subtraction. A similar approach was developed by Mukojima
et. al [10] in the context of railroad objects detection. This
algorithm performs a time-alignment between reference and
target videos by computing frame-by-frame correspondences
and then applies a DTW algorithm using the variance of
the angles between corresponding keypoints as similarity
metric. After synchronizing both videos, the method performs
spatial alignment between frames and computes two image
subtraction metrics to detect object regions. Another method
for detecting objects along a road was proposed in [11].
This approach applies a rough video alignment that uses only
a GPS signal, that is followed by a geometric registration
between frames, with objects in the road being detected by
the computation of a correlation metric.

A surveillance system that uses a moving robotic platform
along with signal processing algorithms is proposed in [12]�
[14]. This system presents a generic framework able to per-
form several tasks such as: detection of audio anomalies [15],
identi�cation of gas leakage, detection of video anomalies
[16], [17] and diagnosis of rotating machines [18]. Its video
anomaly detection algorithm improves the ideas of [11] by
adapting it to the context of real-time object detection in
a cluttered industrial environment. The algorithm identi�es
changes between target and reference frames using a cor-
relation metric dispensing with the use of any clues such



as trail or road detection. During an alignment step, the
algorithm computes horizontal displacements between consec-
utive frames and aligns different videos with a model-based
maximum likelihood estimation, which makes this method not
compatible with non-rectilinear camera movements.

This work proposes a DTW-based video alignment al-
gorithm that can be used in video detection systems. The
online DTW is adapted and optimized in the context of real-
time video alignment for anomaly detection algorithms. One
concern when using the DTW in this application is that one of
the videos can have regions with visual information that do not
exist in the other video. The video anomalies in this case are
objects removed, moved or placed during a new recording. In
order to develop a method able to deal with this issue, in this
work we considered and tested several image distance metrics
according to their ef�ciency in the video temporal alignment
and their computational complexity. The performance of the
video alignment using data acquired by the several sensors
in the surveillance system is also presented for comparison
purposes.

The remaining of this paper is organized as follows. Section
II presents a brief description of the standard DTW algorithm
while Section III shows the online DTW approach. In Section
IV an overview of the surveillance system is presented, and
the proposed algorithm is described in Section V. Section
VI shows the experimental results of the proposed method.
Section VII presents the conclusions and �nal discussions.

II. STANDARD DYNAMIC TIME WARPING

Given two time series X = [x1; x2; � � � ; xN ] and Y =
[y1; y2; � � � ; yM ], the DTW aims to �nd the minimum-
cost path W = [w1; w2; � � � ; wL] with wk = (ik; jk) 2
[1; 2; � � � ; N ]�[1; 2; � � � ; M ] such that xik and yjk are aligned.
This path W usually should satisfy some constraints:
� Boundary: w1 = (1; 1) and wL = (N; M);
� Monotonicity: i1 < i2 < � � � < iL, j1 < j2 < � � � < jL;
� Continuity: wk+1 � wk 2 f(1; 0); (0; 1); (1; 1)g;
To �nd the optimal warping path that aligns the time

series X and Y, one can create a cost matrix d of size
N � M where each element d(i; j) represents a similarity
measurement between the samples xi and yj that is also the
cost of their misalignment. The optimal warping path is the
one that minimizes the sum of the costs along the path:

DTW(X; Y) = min
X

(i;j)2W

d(i; j): (1)

The problem given by Eq. (1) can be easily solved by
dynamic programming, creating an accumulated-cost matrix
D using the following recursive formulation:

D(i; j) = d(i; j) + min

8
<

:

D(i� 1; j)
D(i; j � 1)

D(i� 1; j � 1)

9
=

;
: (2)

The path is obtained starting at the element D(N; M) and
testing each previous element D(N�1; M), D(N; M�1) and

D(N�1; M�1) in the recursion. Whichever has the smallest
value is added to the path and the recursion continues from it
until the element D(1; 1) is reached.

III. ONLINE DYNAMIC TIME WARPING

The standard DTW requires that all samples from both
sequences are known at the start of the execution of the
algorithm, since it aligns the initial and �nal samples from
each sequence beforehand. One of its drawbacks is that when
one of the sequences is only partially known the boundary
conditions cannot be satis�ed. The online DTW seeks the
best alignment of a partially unknown target sequence and
a subsequence of the reference, restricting the search to a
window so that the algorithm has linear complexity.

Starting with reference and target subsequences having the
size of the search window c, the algorithm applies the standard
DTW to �nd an initial warping path, inserting a weight 2 for
diagonal steps in the accumulated cost matrix of Eq. (2), so
that there is no bias for diagonal movements:

D(i; j) = min

8
<

:

D(i� 1; j) + d(i; j)
D(i; j � 1) + d(i; j)

D(i� 1; j � 1) + 2d(i; j)

9
=

;
: (3)

For each new iteration, the algorithm uses the warping path
found in a previous iteration to decide whether to increase the
size of the reference or the target subsequences, and computes
similarity measurements between the new sample from one
sequence and the last c samples from the other sequence,
including them in the cost matrix d. The accumulated-cost
matrix D is also updated by applying Eq. (3) and a new
warping path between the reference and target subsequences
is found.

IV. SURVEILLANCE SYSTEM DESCRIPTION

DORIS - Monitoring Robots for Offshore Facilities is a
surveillance system designed for remote supervision, diagno-
sis, and data acquisition on offshore facilities. The system is
composed of a rail-guided robot that moves inside a cluttered
industrial environment. The robotic platform can carry dif-
ferent interchangeable sensors that provide measurement and
analysis of several properties of the robot and the environment.
Fig. 1 shows an image of the robotic platform and a model of
the rail installed in a cluttered environment. Speci�c details
on the robotic platform and the control mechanisms can be
found in [12]�[14].

(a) (b)

Fig. 1. DORIS System. (a) Robotic platform in a cluttered environment. (b)
3D model of the rail (gray) and the robotic platform (blue).



In the DORIS system, RGB and thermal cameras are em-
ployed in the detection of video anomalies such as abandoned
objects, gas leakage and �re. An anomaly detection algorithm
[16], [17] designed for this system compares frames from a
new video that may contain an anomaly with the most similar
frames from a reference video (a previous recording which was
validated by an operator as having no anomalies). In order to
�nd the similar frame in the reference video, the algorithm
computes displacements between consecutive frames from
each video and aligns the videos using a template matching.
Fig. 2 shows a frame from a video with an abandoned object
and a frame with the same view from the reference video.

(a) (b)

Fig. 2. Example of a reference frame and an aligned target frame with video
anomalies to be detected. (a) Reference frame. (b) Target frame from the same
scene with a few different objects marked by a red square.

The system also has several sensors measuring orientation,
speed, acceleration and power consumption. This information
can be used, for instance, to estimate the current position
and provide temporal and spatial alignment. The system has a
native algorithm that uses only the power consumption infor-
mation to provide a rough estimate of the linear displacement
between the current instant and the starting position, which can
also be used to align any video with a reference video. In [19],
a correlation metric is used to �nd the delay that best aligns the
outputs of sensor set corresponding to two different recordings.
This delay is used to estimate the optimal alignment between
other signals of interest such as audio or video signals.

V. ONLINE VIDEO ALIGNMENT FOR MOVING CAMERA
OBJECT DETECTION

The framework of surveillance systems with moving camera
object detection imposes several constraints that must be satis-
�ed by the alignment algorithm. In this application, one of the
sequences, the reference signal, is fully known and the other
sequence, the target sequence, is being received in real-time
and must be aligned and processed on-the-�y, which makes the
online DTW seen in Section III a suitable approach. However,
in order to be used in this framework, some innovations had
to be made to the online DTW algorithm.

Since the original online DTW was developed for a music
application, a new cost function must be applied in order to
align video frames. Furthermore, when dealing with videos
acquired in a surveillance operation, one can often deal with
frames recorded in the same position that have regions with
different information. As can be seen in Fig. 2, the frames from
the target video may have regions with video anomalies. In this
case there may be objects that either did not exist or were in a

different position during the reference recording. Thereby, the
alignment algorithm must be able to align frames even when
one of them has small regions that do not match the ones in
the other. In this work, we propose the use of a simple metric,
the mean square error (MSE) between subsampled frames (L2
norm) and show that it produces the best compromise between
error rate and processing time. We also show that it has some
of the best results with low computational complexity, which
is an important requirement in real-time applications.

The original algorithm proposed by Dixon [8] performs
an optimal warping between two videos which can include
repetitions of any of the frames of the videos. However, in
an object detection application, the real concern is �nding a
frame in the reference video that is equivalent to each new
frame in the target video. Therefore, the proposed algorithm
computes the optimal warping path and, for each target frame,
�nds the aligned reference frame with the minimum cost.

In addition, the online DTW algorithm computes the path
in the forward direction, incrementally computing the optimal
warping for each new sample. In the proposed system, a
latency in the warping path computation is introduced, by
computing the alignment for a given target frame only after
the k subsequent frames were received. This approach was
discussed in [8] and was deemed unnecessary in the context
of music alignment. However, since this work deals with
a different application, this approach with latency is also
considered.

VI. RESULTS

The system described in Section IV was used in the acquisi-
tion of six videos: two reference videos and four target videos
that contain anomalous objects. For three target videos the
robotic platform was programmed to vary its speed along the
trajectory, with speed varying between 0:2 m=s and 0:4 m=s,
thus generating videos with a warping in time when compared
to the reference video. The fourth target video was recorded
with a constant speed of 0:1 m=s, but it contains regions with
bigger anomalous objects than the other three target videos,
as the one seen in Fig. 2. The reference videos were recorded
with the robotic platform moving with two constant speeds:
a recording with speed of 0:2 m=s that is a reference to
the three target videos with varying speeds, and a recording
with speed of 0:1 m=s that is a reference to the constant-
speed target video. All videos have a spatial resolution of
800�450 pixels and have a frame rate of around 2:5 fps. Tab. I
summarizes some of the properties of the videos. The proposed
algorithm was implemented in C++ and tested with several
target video and reference video alignment con�gurations. The
tests were made using a computer with an Intel Core i7-
3630 QM processor with 2:40 GHz clock and 16 GB of RAM.

A. Cost Function
To test the robustness of the DTW algorithm in this appli-

cation, several cost functions were considered. In [4], a DTW
is developed which uses a subsampled version of the frame as
the frame descriptor, and uses as cost function the L1-norm



TABLE I
PROPERTIES OF THE VIDEOS USED IN THE TESTS.

Duration (s) Total frames Camera speed (m=s)
Target 1 560 1400 0.2 to 0.3
Target 2 486 1215 0.2 to 0.4
Target 3 488 1218 0.2 to 0.4
Target 4 1329 3176 0.1

Reference 1 649 1622 0.2
Reference 2 1346 3050 0.1

between frame descriptors. The moving-camera background-
subtraction algorithm proposed in [10] employs the normalized
vector distance (NVD) [20] to compare frames and detect
anomalies, which can also be applied as a cost function
in a DTW algorithm. Other common metrics for comparing
frames also tested include the structural similarity (SSIM) [21]
and distance between histogram of oriented gradients (HoG)
descriptors [22].

In the tests, cost functions based on the L1 and L2 norms
were considered. We subsample the reference and target
frames to the size 16� 9, stack the lines from each frame in
a descriptor vector and compare the descriptors by computing
the L1 and L2 norms of the difference. The HoG cost function
uses a descriptor based on the implementation given by [23].
For the NVD cost function, the original frames are subsampled
to the size 80 � 45 and each frame is divided into 25 image
patches. The SSIM is applied in the comparison of the frames
after downsampling to the size 32� 18.

The standard DTW was tested in the videos for compar-
ison purposes. This version of the algorithm computes the
similarities between all frames from both videos, having a
computational complexity that is quadratic on the length of
the videos. Due to the amount of processing time this method
takes to align each pair of videos, it was only tested with the
cost function that computes the L2-norm of the error between
subsampled frames.

For the sake of comparison, the system’s native displace-
ment estimation algorithm was also employed in the computa-
tion of a video alignment between reference and target videos
and its results were used as ground-truth. This algorithm uses
only the measurement of the power consumption to estimate
the robot’s linear position during the recording, that gives the
linear position at which each frame of a video was acquired.
Using this information, one can achieve video alignment by
�nding the frames in the two videos that were recorded in
closest positions. In Fig 3, one can see an example of the linear
position estimate for a reference video recorded at a constant
speed and a target video recorded with speed variation.

We also investigate the use of the signals acquired by all the
other sensors available in the DORIS system in the alignment
problem. These sensors have a timestamp that enables a
synchronism with a video signal acquired simultaneously, so
the alignment obtained from the sensor data for the reference
and target recordings can be used to estimate a time-warping
between the two videos. For this purpose, be ri a vector
containing the set of sensors samples acquired at a time i

(a) (b)

Fig. 3. Example of the linear position estimate provided by the DORIS
system. The trail has a length of approximately 130 m. (a) Reference video
with constant speed (2 laps). (b) Target video with speed variation.

during the reference recording and tj a vector containing the
set of sensors samples acquired at a time j during the target
recording. We applied the DTW with cost function:

d(i; j) = kri � tjk
2 : (4)

For these tests, we consider only the search window pro-
vided by the online DTW algorithm, and compute the �nal
warping path using the whole reference and target sequences.
A �rst experiment analyses the impact of the several cost
functions and the reduced cost matrix in the alignment between
the target and reference sequences. In a second experiment
we perform an analysis of the quality of the incremental path
estimated on-the-�y by the online approach.

Tab. II presents the alignment error between the several cost
functions tested in the DTW algorithm and the ground truth.
Tab. III presents the average processing time for each cost
function. As can be seen from the results, the cost function
based on the L2-norm (which represents, up to scale, the MSE
between subsampled frames) is only outperformed, in terms
of alignment error, by the cost functions based on NVD and
SSIM. However, it is at least 2 times faster than both of them.
Given that it is advantageous that the alignment step be as
simple as possible due to the very complex nature of the
anomaly detection step, this indicates that the MSE is the best
cost function to be used in a real-time application. One should
also notice that, despite computing only a reduced number of
frame similarities, which are restricted to a search window,
the online approach produces the same result as the standard
DTW, showing that the algorithm correctly estimates a region
of interest around the best warping.

B. Real-time warping
In a real-time anomaly-detection application, a frame from

the target video must be synchronized to a frame from the
reference video in order to produce an output without prior
knowledge of any posterior target frames. If the system can
allow a �xed latency by producing a detection output for the
target frame N only after K new target frames have been
received, the optimal alignment for frame N can be estimated
with a �xed look into the future. In this case, the optimal
warping path used to align target frame N can be computed



TABLE II
ALIGNMENT ERROR (IN FRAMES) FOR SEVERAL COST FUNCTIONS USED
IN THE DTW ALGORITHM. THE ERROR IS COMPUTED AS THE AVERAGE
DIFFERENCE BETWEEN THE ALIGNMENT GIVEN BY THE DTW METHOD

AND THE ALIGNMENT PROVIDED BY THE SYSTEM’S NATIVE
DISPLACEMENT ESTIMATE. THE BEST 3 RESULTS ARE MARKED IN BLUE.

Average error (frames)
Video 1 Video 2 Video 3 Video 4

Online DTW

L 1 0.95 0.92 1.45 0.44
L 2 0.58 0.48 0.80 0.37

SSIM 0.41 0.39 0.66 0.36
NVD 0.48 0.60 0.78 0.32
HoG 0.45 0.61 0.95 0.38

Sensor 4.88 6.08 5.86 4.84
Standard DTW L 2 0.58 0.48 0.80 0.37

TABLE III
PROCESSING TIME FOR SEVERAL COST FUNCTIONS USED IN THE DTW

ALGORITHM. THE BEST 3 RESULTS ARE MARKED IN BLUE.

Processing time (s)
Video 1 Video 2 Video 3 Video 4

Online DTW

L 1 76 82 89 283
L 2 83 80 87 308

SSIM 189 187 189 516
NVD 243 233 236 671
HoG 89 79 83 280

Sensor 19 18 20 76
Standard DTW L 2 41311 52954 40567 132571

between a subset of the reference sequence and the target
sequence up to the frame N + K.

In this subsection, we analyze how the DTW algorithm
behaves when providing a frame alignment in a real-time ap-
plication. Using as cost function the MSE between subsampled
frames, we vary the allowed latency in the system. The results
can be compared to the ones shown in Tab. II, which represents
the alignment error with the maximum amount of latency,
when all information from the target video is available in the
computation of the video alignment.

Fig. 4 shows the alignment error obtained when using
several values of latency in the warping computation. The
results show that, contrary to what is stated in [8], the use of
latency can reduce the alignment error up to a third of the one
obtained when using only the current target frame to estimate
the warping. The graphs also show that with a latency of 50
frames, which corresponds to approximately 20 s , the error
becomes close to the minimum, reaching a value similar to the
one in Tab. II. For all cases, a good trade-off is found when
using a latency of around 15 frames, which represents a delay
of approximately 6 s and is not prohibitive for the considered
application.

VII. CONCLUSIONS

This work presented a video-based temporal alignment
algorithm for surveillance systems based on a dynamic time-
warping approach that is able to compute the time-warping
between sequences in real-time. The algorithm was tested
in a real application that consists of a platform that moves
inside a cluttered environment and records a video signal
which is used in the detection of video anomalies. The results

(a) (b)

(c) (d)

Fig. 4. Average alignment error (in frames) using as cost function the MSE
between subsampled frames. (a) Video 1. (b) Video 2. (c) Video 3. (d) Video
4.

show that the mean square error between frames provides
the best compromise between alignment error and processing
time when used as a cost function for the DTW algorithm.
The results also show that the real-time computation of the
warping produces a three-fold penalty in the alignment error
when compared to the warping computed using all samples
from the sequences. If some latency in the computation is
allowed, a good trade-off between the alignment error and the
delay introduced is obtained using a latency of 6 s.
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