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ABSTRACT 

 
Light field imaging is a promising new technology that 
allows the user not only to change the focus and perspective 
after taking a picture, as well as to generate 3D content, 
among other applications. However, light field images are 
characterized by large amounts of data and there is a lack of 
coding tools to efficiently encode this type of content. 
Therefore, this paper proposes the addition of two new 
prediction tools to the HEVC framework, to improve its 
coding efficiency. The first tool is based on the local linear 
embedding-based prediction and the second one is based on 
the self-similarity compensated prediction. Experimental 
results show improvements over JPEG and HEVC in terms 
of average bitrate savings of -71.44% and -31.87%, and 
average PSNR gains of 4.73dB and 0.89dB, respectively. 
 

Index Terms— light field image coding, self-similarity, 
image prediction, locally linear embedding, HEVC 
 

1. INTRODUCTION 
 
Light field imaging, also known as – holoscopic, integral and 
plenoptic imaging – is an imaging technology that is able to 
capture a 4D light field by means of multiplexing the light 
field data in the camera’s 2D conventional sensor resolution 
[1]. This multiplexing is done through an array of microlens 
placed between the main lens and the camera sensor. Each 
microlens creates a micro-image (MI), which is the microlens 
scene perspective being captured through the main lens. As a 
result, a light field image tends to be similar to the output of 
an array of very small cameras.  
This image acquisition approach supports new image 
manipulation features not straightforwardly possible with 
traditional 2D image acquisition, like refocusing and 
changing the perspective after a picture has been taken [1]. 
Additionally, several applications exist that would benefit 
from these features, e.g., richer image capturing [1], 3D 

Television [2], image recognition and medical imaging [3]. 
___________________________ 
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Recognizing the potential of this technology, the JPEG 
Committee has launched a new standardization activity (the 
JPEG Pleno [4]), which is targeting both representation and 
compression of light field, point-cloud and holographic 
content. New compression tools for light field images are of 
paramount importance because of the high amounts of data 
involved (e.g., the sensor resolution of a Lytro Illum light 

field camera is 40 megapixel [5]). Available image/video 
coding standards like JPEG [6] and HEVC [7] have sub-
optimal performances, since they are not optimized for this 
kind of content.  

Some light field coding schemes described in the 
literature are based on a discrete cosine transform (DCT) 
[8,9] or a discrete wavelet transform (DWT) [10]. In [8], a 
3D-DCT is applied to a stack of micro-images, to exploit the 
existing spatial redundancy within each micro-image, as well 
as the redundancy between adjacent micro-images. In [10], a 
light field image is decomposed into viewpoint images and a 
3D-DWT is applied to a stack of these viewpoint images. The 
lower frequency bands are transformed using a two-
dimensional discrete wavelet transform (2D-DWT), while the 
remaining high frequency coefficients are simply quantized 
and arithmetic encoded. These coding schemes are more 
efficient than JPEG but not as efficient as HEVC still picture 
coding. 

More recently, other authors proposed new prediction 
tools to HEVC to improve its coding efficiency for light field 
images. Such tools include locally linear embedding (LLE)-
based prediction [11,12] and the self-similarity (SS) 
compensated prediction [13]. Both methods improve the 
efficiency of HEVC standard to encode light field images, by 
exploiting their inherent non-local spatial redundancy.  

This paper proposes a light field image coding solution 
based on HEVC coding architecture combined with the LLE 
and the SS prediction methods [12,13]. Since both 
approaches are conceptually different, it is expected that there 
may be compression ratios, content types and optical setups 
where one method performs better than the other. By joining 
both approaches improved coding efficiency is expected. 

The remainder of this paper is organized as follows: 
Section 2 briefly describes the advantages of using HEVC as 
a basis environment to implement other coding techniques, as 



 

well as LLE and SS prediction methods. Section 3 accesses 
the performance of the proposed solution in comparison with 
relevant benchmarks and, finally, Section 4 concludes the 
paper.  
 

2. PROPOSED PREDICTION MODES FOR HEVC 
 

This proposal incorporates the LLE and SS prediction modes 
in a HEVC codec. The use of HEVC as the basis environment 
has several advantages: 
1. HEVC has very flexible prediction modes and partition 

patterns. HEVC intra prediction uses planar, DC and 33 
directional modes to exploit spatial redundancy. Coding 
blocks (CB) can have a size between 64×64 and 8×8 
pixels. The prediction blocks (PB) can be 2N×2N, 
2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N and 
nU×2N, where N can be 32, 16 and 8. 

2. The utilized HEVC test module [14] chooses the best 
mode for each CB based on a rate-distortion optimization 
(RDO) criterion. The selected CB is encoded using the 
mode that achieves the lowest cost. The HEVC 
framework is therefore flexible to host new coding tools, 
which can improve the performance of the conventional 
HEVC tools.  

3. The proposed tools can be applied as an extension of the 
HEVC algorithm. 

The following subsections describe how both proposed tools 
are integrated in HEVC to improve its efficiency for light 
field image coding. 
 
2.1. Locally Linear Embedding-Based Prediction 

 
LLE is a mathematical tool used to map nonlinear high 
dimensional data into a low dimensional coordinate system. 
Its working principle has been used in literature as the basis 
of a new intra image prediction method [11]. The main idea 
behind LLE-based prediction method is to estimate the 

current CB through a linear combination of the 𝑘-nearest 
neighbor (𝑘-NN) patches. To find the linear coefficients, LLE 
solves a least-squares optimization problem with a constraint 
on the sum of the coefficients that has to be 1. This estimation 
procedure is based on a previously coded and reconstructed 
area of the image, so that it can be performed in both encoder 
and decoder sides. 

When applying LLE as an image prediction method it is 
necessary to define the search window, a template format and 
the block that is going to be predicted. Fig. 1 illustrates the 

mentioned elements. The causal window, 𝑾, is used for 
searching the 𝑘-NN template patches that present the lowest 
matching error with template 𝑪. The k best template patches 
obtained in the search procedure are then linearly combined 

to approximate the template 𝑪, using optimally estimated 
coefficients. Finally, the block 𝑷, is predicted using the same 
linear coefficients estimated for template patches, but used to 
combine the square blocks associated to each template patch. 
A formal description is given as follows. 

 

 
 

Fig. 1. Search window used by LLE-based prediction method 

 
Consider the region 𝑺, the 𝑁-pixel area that corresponds 

to both block 𝑷 (𝑁𝑝-pixels) that is being predicted, and the 

known template 𝑪 (𝑁𝑐-pixels). A vector �⃗�  can be defined by 

stacking all the values from region 𝑺 into a single column (the 
pixels from the unknown block 𝑷 are assumed to be zero). 

Additionally, an 𝑁 × 𝑀 matrix 𝑨 is defined as the basis 
dictionary, by stacking all the patches from the search 
window, similar to region S. 

Notice that both matrix 𝑨 and �⃗�  contain two vertically 

concatenated sub-matrices 𝑨𝒄 and 𝑨𝒑 and �⃗� 𝑐 and �⃗� 𝑝. These 

sub-matrices contain the pixel values correspondent to the 

template 𝑪 and the block 𝑷, respectively.  
In order to reduce the number of dictionary elements, the 

𝑘-NN method is used to select the 𝑘 closest patches to 
template 𝑪, in terms of Euclidean distance. These 𝑘-NN 

patches are stacked into a new matrix, defined as 𝑨𝒄
𝒌. 

Given the matrix 𝑨𝒄
𝒌 and the vector �⃗� 𝑐, the LLE-based 

prediction can be defined through the following optimization 
problem:  
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where 𝑥𝑘⃗⃗⃗⃗  represents the desired solution of 𝑘 optimal linear 
coefficients. Note that, this optimization problem can be 
solved in both encoder and decoder sides since it only 
depends on causal information, namely the search window 

(𝑨𝒄
𝒌) and the template 𝑪 (or �⃗� 𝑐). 

Finally, the block prediction is given by 𝑏𝑝 = 𝑨𝒑 𝑥 𝑜𝑝𝑡. 

For improved performance, the encoder tests different 𝑘 
values, from 1 up to 8, and the one that produces the best 
block prediction result (𝑏𝑝), is explicitly transmitted to the 

decoder. 
 

2.2. Self-Similarity Compensated Prediction 
 

The self-similarity compensated prediction (SS) is an intra 
prediction tool based on a block matching algorithm, applied 
to a causal area of the image.  

In light field images, the repetitive structure of micro-
images has a lot of redundant information, which corresponds 
to the various points of view from each microlens. By 
applying a SS-estimation using the same search window W 
from Fig. 1, the best match between the current CB and an 



 

already coded and reconstructed area of the image, is signaled 
by a shift vector (referred to as the SS vector).  

Additionally to the vector, the SS method uses other 
signaling techniques based on the inter-prediction tools. 
Using a picture order count (POC) distance, which in the case 
of SS is always zero, because it corresponds to the current 
picture, the reconstructed area from the current image is 
treated as a reference picture.  

Alternatively, an SS-skip mode is defined, in which, 
similarly to HEVC merge technique [7], instead of 
transmitting the vector difference explicitly, SS vectors can 
be derived from neighboring PB. The advantage of SS-skip, 
relatively to SS-estimation, is the fact that a derived vector 
can be reused by simply signaling its origin PB using an 
index. The SS-skip mode, as in [7], fills a candidate list with 
the available spatially neighboring PBs. Their availability 
depends mostly on which prediction mode was used to 
encode the neighboring PB (e.g., if an intra mode was used, 
SS-skip does not add any candidate to the list).  

As explained before, a light field image has very 
different characteristics from a standard image. Due to the 
repetitive grid of micro-images, the cross-correlation of a 
light field image is described by several cyclic peaks. The 
peaks repeat within a distance of one micro-image, in pixels, 
both vertically and horizontally [13]. Because of this, the SS 
vector distribution has a statistical behavior that is 
characteristic to this kind of content. The most likely chosen 
vectors are centered on multiples of MI sizes, because the 
cross-correlation is higher on those points.  

With this prior knowledge it was possible to increase the 
efficiency of SS vector prediction. The SS vectors that were 
used to encode spatially neighboring PB are used to fill a list 
of candidates for SS vector prediction, similarly to HEVC 
advanced motion vector prediction (AMVP). AMVP is used 
originally by HEVC to allow motion vectors to be transmitted 
relatively to vectors applied in nearby PB. Since it is very 
likely that the current PB is going to have similar motion, the 
vector difference is transmitted, instead of the explicit vector. 
In the case of SS vectors, this premise also applies. Moreover, 
three additional candidates are added as part of the MI-based 
prediction [13], the AMVP and merge candidate list, that are 
calculated based on the PB and MI sizes. These vectors will 
point to the left, above and above-left micro-images.  
 

2.3. Integration of proposed prediction modes in HEVC 
 
As mentioned before, HEVC framework is flexible to host 
new coding tools. Therefore, both prediction methods were 
added to this framework so they can compete, in terms of RD 
cost, with the HEVC conventional tools to exploit spatial 
redundancy. This means that additionally to the HEVC intra 
modes, LLE and SS are tested as well. The mode with the 
lowest RD cost is selected to encode the CB. 

Whenever new coding tools are added to the HEVC 
framework, it is necessary to define a way to signal the 
additional information to the decoder. In order to facilitate 
this step, for the implementation of LLE, 8 directional modes 
from HEVC where substituted for LLE to signal the value of 

𝑘. Since using all the 8 NN patches is not always the most 
efficient option [12], each 𝑘 value is explicitly transmitted by 
using the already available signaling methods for 8 
directional modes. The correspondence between the mode 

that was substituted and the value of 𝑘 follows the rule: 𝑘 =
(𝑚𝑜𝑑𝑒 + 1)/4. Since SS-estimation and SS-skip modes 

work similarly to HEVC inter modes, only high level syntax 
was necessary for signaling the necessary information to the 
decoder. This high level syntax includes a modified I slice 
that uses the tools from P slices. 

The configuration of both techniques took into account a 
good compromise between efficiency and computational 
complexity. Most of the computational complexity of the 
proposed techniques comes from the search algorithms. Both 
techniques use a full search algorithm with a search range of 
128 pixels. More specifically, in Fig. 1 the causal search area 
used for both LLE and SS corresponds to 𝐷𝐻1

= 128, 𝐷𝑉1
=

128 − 𝑇 and 𝐷𝑉2 = 𝑇 + 𝑃𝑌 . For LLE, the region length 
defined for the template C was 𝑇 = 4. Additionally 𝐷𝐻2

= 64 

was used for LLE and 𝐷𝐻2
= 128 was used for SS. Moreover, 

each method accounts for a computational complexity similar 
to what HEVC would need to encode an inter-coded frame 
using the same search algorithm and search range.  

 
3. EXPERIMENTAL RESULTS 

The performance of the proposed LLE-based and SS 
prediction methods for light field image coding combined 
with HEVC (referred as HEVC+LLE+SS) was evaluated 
against JPEG and HEVC standards, as well as SS [13] 
individually (referred to as HEVC+SS). The reference HEVC 
software version HM-14.0 was used for the proposed 
schemes HEVC+LLE+SS and HEVC+SS, and it was also 
used as a benchmark.  

The experimental setup was defined using the ICME 2016 
Grand Challenge criteria, the Light Field Image Compression 
document [15]. This document specifies the usage of the 
EPFL light field image dataset [16] and how to evaluate the 
efficiency of the proposed techniques. The raw YCbCr 4:2:0 
light field was encoded by all the referred encoders for target 
compression ratios of 10, 20, 40, and 100, which corresponds 
to 5185488, 2592744, 1296372, 518549 bytes, respectively. 
Since no bitrate control algorithm was developed, because it 
was not the focus of this work, several QPs (quantization 
parameters) were tested. QPs achieving the closest target 
compression ratios were chosen for the final results. The 
reconstructed light field image was then converted to a LF 
data structure, which is a stack of 2D low-resolution RGB 
images in addition to a weighting image. The generated LF 
data structure is then compared to the provided reference LF 
data structure, using the average PSNR-YUV of all 2D low 
resolution images. In order to compare the several 
benchmarks with the proposed HEVC+LLE+SS solution, 
Bjontegard delta metrics (BJM) [17] were used. The 
comparative results for the proposed solution, in relation to 
each of these benchmarks, are presented in Table 1. 

As can be observed, the proposed solution is able to 
outperform all the other tested solutions for every image, 



 

except for I10 encoded with HEVC+SS. As expected, the 
gains relative to JPEG are very high, with an average of 
71.44% bitrate savings and 4.73dB of PSNR gains. Although 
HEVC+SS solution already presents interesting gains when 
compared to HEVC, its combination with LLE is able to 
further increase the RD efficiency, with bitrate savings of up 
to 42.63% and PSNR gains up to 0.72dB. Both LLE and SS 
prediction methods complement each other in the HEVC 
framework, as LLE is based on implicit predictors and SS is 
based on explicit predictors. This means that for LLE the 
decoder needs to repeat almost the same procedure of the 

encoder, with the exception of determining the optimal 𝑘 
value, while for SS the decoder applies the prediction vectors 
computed in the encoder. 

 
Table 1 - BJM results of proposed HEVC+LLE+SS solution for 

several benchmarks 

Benchmark JPEG HEVC HEVC+SS 

BD Rate PSNR Rate PSNR Rate PSNR 

I01 -63.97 4.76 -26.98 0.96 -9.56 0.28 

I02 -69.78 5.14 -19.5 0.62 -7.25 0.21 

I03 -57.93 4.15 -8.16 0.27 -4.39 0.14 

I04 -61.96 4.61 -8.20 0.23 -1.01 0.03 

I05 -71.46 3.69 -31.59 0.66 -16.72 0.26 

I06 -78.63 5.03 -60.15 1.56 -42.63 0.66 

I07 -67.11 4.19 -16.93 0.42 -8.84 0.19 

I08 -69.89 3.82 -37.77 0.71 -30.15 0.48 

I09 -79.49 5.50 -47.13 1.63 -17.52 0.44 

I10 -70.09 3.56 -5.60 0.11 0.40 0.03 

I11 -86.61 5.87 -68.34 1.86 -40.68 0.72 

I12 -80.41 6.42 -52.05 1.60 -24.03 0.46 

Average -71.44 4.73 -31.87 0.89 -16.87 0.33 

 
4. CONCLUSIONS 

This paper proposes to improve the coding efficiency of 
HEVC codec for light field images, by means of enriching its 
prediction framework with two new tools: LLE and SS.  
Experimental results show that by combining these prediction 
tools, higher rate-distortion gains can be achieved when 
comparing to various benchmarks, namely, JPEG, HEVC and 
HEVC+SS. Average bitrate savings of 71.44%, 31.86% and 
16.87% are achieved, when comparing to, JPEG, HEVC and 
HEVC+SS, respectively. Future work will include the study 
of a unified method that combines the advantages of the 
presented techniques, exploiting both the implicit and explicit 
prediction characteristics. 
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